
An Introduction To Tcl and Tk

John K. Ousterhout
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal
use only. Any other form of duplication or reproduction requires prior written permis-
sion of the publisher. This statement must be easily visible on the first page of any
reproduced copies. The publisher does not offer warranties in regard to this draft.

Note to readers:
This manuscript is a partial draft of a book to be published in 1993 by Addison-Wes-
ley. Addison-Wesley has given me permission to make drafts of the book available to
the Tcl community to help meet the need for introductory documentation on Tcl and
Tk until the book becomes available. Please observe the restrictions set forth in the
copyright notice above: you’re welcome to make a copy for yourself or a friend but
any sort of large-scale reproduction or reproduction for profit requires advance per-
mission from Addison-Wesley.

I would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atouster@cs.berkeley.edu . I’m particularly interested
in hearing about things that you found difficult to learn or that weren’t adequately
explained in this document, but I’m also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

2

DRAFT (10/9/92): Distribution Restricted

i

DRAFT (10/9/92): Distribution Restricted

Table of Contents

Chapter 1 Introduction 1
1.1 The philosophy behind Tcl 2

1.2 The Tk toolkit 5

1.3 Reading this book 6

Chapter 2 Tcl Basics 9
2.1 Simple commands 9

2.2 Command terminators 10

2.3 Normal and exceptional returns 11

2.4 Variable substitution 11

2.5 Command substitution 12

2.6 Backslash substitution 13

2.7 Quoting with double-quotes 14

2.8 Quoting with curly braces 15

2.9 Comments 17

Chapter 3 Variables 18
3.1 Simple variables and the set command 18

3.2 Arrays 20

3.3 Variable substitution 20

3.4 Removing variables: unset 22

3.5 Multi-dimensional arrays 23

3.6 The incr and append commands 24

3.7 Preview of other variable facilities 24

DRAFT (10/9/92): Distribution Restricted

ii

Chapter 4 Expressions 26
4.1 Introduction and the expr command 26

4.2 Operands and substitutions 27

4.3 Operators and precedence 29
4.3.1 Arithmetic operators 29
4.3.2 Relational operators 31
4.3.3 Logical operators 31
4.3.4 Bitwise operators 32
4.3.5 Choice operator 32

4.4 Types and conversions 33

Chapter 5 Lists 34
5.1 Basic list structure and the lindex command 34

5.2 Creating lists: concat, list, and llength 37

5.3 Modifying lists: linsert, lreplace, lrange, and lappend 38

5.4 Searching lists: lsearch 40

5.5 Sorting lists: lsort 41

5.6 Converting between strings and lists: split and join 41

Chapter 6 Control Structures 43
6.1 The if command 43

6.2 Looping commands: while, for, and foreach 46

6.3 Loop control: break and continue 47

6.4 The case command 48

6.5 Generating commands on the fly: eval 50

6.6 Executing from files: source 51

Chapter 7 Procedures 53
7.1 Procedure basics: proc and return 53

7.2 Local and global variables 55

7.3 More on arguments: defaults and variable numbers of arguments 56

7.4 Exotic scoping facilities: upvar and uplevel 58

iii

DRAFT (10/9/92): Distribution Restricted

7.5 Replacing, renaming, and deleting commands 60

Chapter 8 Errors and Exceptions 63
8.1 What happens after an error? 63

8.2 Generating errors from Tcl scripts 66

8.3 Trapping errors with catch 66

8.4 Exceptions in general 67

8.5 Reissuing errors 69

Chapter 9 String Manipulation 73
9.1 Generating strings with format 73

9.2 Extracting characters: string index and string range 78

9.3 Parsing strings with scan 79

9.4 Simple searching and comparison 81

9.5 Glob-style pattern matching 81

9.6 Pattern matching with regular expressions 82

9.7 Using regular expressions for substitutions 86

9.8 Length, case conversion, and trimming 87

Chapter 10 Accessing Files 89
10.1 File names 89

10.2 Basic file I/O 91

10.3 Random access to files 93

10.4 The current working directory 95

10.5 Manipulating file names 95

10.6 File information commands 98

10.7 Errors in system calls 100

Chapter 11 Processes 101
11.1 Invoking subprocesses with exec 101

DRAFT (10/9/92): Distribution Restricted

iv

11.2 I/O to and from a command pipeline 104

11.3 Environment variables 105

11.4 Terminating the Tcl process with exit 105

Chapter 12 History 107
12.1 The history list 107

12.2 Specifying events 110

12.3 Re-executing commands from the history list 110

12.4 Current event number: history nextid 112

12.5 Retrieving without re-executing 112

12.6 History revision 113

12.7 Modifying the history list 114

Chapter 13 Accessing Tcl Internals 117
13.1 Querying the elements of an array 117

13.2 The info command 120
13.2.1 Information about variables 120
13.2.2 Information about procedures 122
13.2.3 Information about commands 124
13.2.4 Tclversion and library 124

13.3 Timing command execution 125

13.4 Tracing operations on variables 125

13.5 Unknown commands 128

1

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 1
Introduction

This book is about two systems called Tcl and Tk that provide a simple yet powerful pro-
gramming system for developing and using windowing applications. Tcl stands for “tool
command language” and is pronounced “tickle.” It is a simple interpretive programming
language. Tcl is implemented as a library of C procedures, so it can be included in many
different applications and can be used for many different purposes. Tk is a toolkit for the
X11 window system. Its name is pronounced “tee-kay.” Tk is also implemented as a
library of C procedures so it too can be used as part of many different windowing applica-
tions. More importantly, Tk is implemented using Tcl: its facilities can be invoked using
Tcl commands.

If an application is based on Tcl and Tk, then both its functionality and its user inter-
face can be modified at run-time by writing short Tcl scripts. This allows users to person-
alize and extend existing applications without having to recompile them. Many new
windowing applications can be created without writing any C code at all, just by writing
short scripts for a windowing shell calledwish , which contains Tcl and Tk. In the same
way that a script for a shell program likecsh can usually be written much more quickly
than a C program that does the same thing, many simple windowing applications can be
written more quickly aswish scripts than as C programs that do the same thing.

Even more important, Tcl and Tk make it easy for different applications to communi-
cate with each other. Tk provides a special command calledsend , which allows any Tk-
based application to send Tcl commands to any other Tk-based application.Send pro-
vides a much more powerful form of communication than the window system’s selection,
which is the only mechanism available in most of today’s X11 applications. Withsend ,
hypertext and hypermedia applications become easy to build; spreadsheets can query data-
bases for values; user-interface editors can modify the interfaces of live applications as

GURE 1

ABLE 1

2 Introduction

DRAFT (10/9/92): Distribution Restricted

they run; and many other similar things become possible. Tcl and Tk are intended to stim-
ulate the development ofhypertools: specialized applications that can be plugged together
in a variety of interesting ways.

This book provides a complete explanation of both Tcl and Tk. It contains five major
parts:

• Part I introduces the features of the Tcl language. After reading this section you will be
able to issue commands to Tcl-based applications and write scripts to extend those
applications.

• Part II describes the additional Tcl commands provided by Tk, which allow you to cre-
ate user-interface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you will be able to modify the interfaces of
existing applications, create new applications by writing Tcl scripts for existing applica-
tions, and usesend to make Tk-based applications work together.

• Part III describes how to write applications that use Tcl. It discusses the C procedures
provided by the Tcl library and how to use them to build applications. After reading this
section you will be able to write C code for new Tcl-based applications.

• Part IV describes the C library procedures provided by Tk. After reading this section
you will be able to write new widgets and geometry managers in C.

• Part V contains reference documentation for Tcl and Tk. It describes both the Tcl com-
mands and the C library procedures. Whereas the rest of the book is intended to be
introductory in nature, this section is intended as a reference manual, so it is terse but
complete.

This book is intended for people who will be scripting existing applications or writing
new ones. It assumes that you already know the C programming language and that you
have some experience with UNIX and with X11. You need not know anything about either
Tcl or Tk before reading this book: both of them will be introduced from scratch.

The remainder of this chapter provides a more thorough overview of the philosophy
and structure of Tcl and Tk.

1.1 The philosophy behind Tcl

Every computer application has a command language of some sort. It may be as simple as
the options that can be specified on the shell command line, or it may be a graphical lan-
guage consisting of menus and buttons and mouse clicks, or it may be a full-fledged pro-
gramming language, but there must be some way for a user to tell the application what to
do.

Larger and more powerful applications generally need to have more powerful and
flexible command languages. This is because it is hard for an application designer to pre-
dict all of the ways the application will be used. If the command language is powerful

1.1 The philosophy behind Tcl 3

DRAFT (10/9/92): Distribution Restricted

enough, individual users can tailor the application to their needs. If a user needs a function
that wasn’t present in the original application, he or she may be able to create that function
by writing a short program in the command language. A good command language allows
an application to be used for many tasks never considered by the application’s designers.
This greatly increases the value of the application.

Command languages are particularly important for interactive windowing applica-
tions. Windowing applications tend to have rich user interfaces with many different ways
the user can tell the application what to do. A user might invoke an operation by pulling
down a menu entry, or by clicking on a button-like object, or by dragging an object on the
screen, or by typing keystrokes. It’s important for interactive applications to be config-
urable. “Power users” may wish to create new operations that save them time by executing
a sequence of actions in response to a single keystroke or mouse movement. Or , a user
may wish to re-arrange the application’s appearance to fit his or her particular needs (e.g. a
left-handed user might prefer to have scrollbars on the left side instead of the right). Users
may also wish to connect different applications together so that they can work coopera-
tively. For example, a debugger application might use an editor application to display the
current line of execution, or a spreadsheet application might wish to retrieve values from a
database application. All of these functions require a mechanism for telling an application
what to do: a command language.

Unfortunately, today’s applications don’t usually have good command languages.
Where good languages exist, they tend to be tied to specific programs. Each new applica-
tion requires a new command language to be developed. In most cases application pro-
grammers do not have the time or inclination to implement a general-purpose facility,
particularly if the application itself is simple. As a result, command languages tend to have
insufficient power and clumsy syntax. This makes applications hard to use and even
harder to reconfigure or extend; it is difficult to use most applications for anything that
wasn’t explicitly planned by the application’s designers.

The guiding philosophy for Tcl is that every application, no matter how simple,
should have a powerful and flexible command language that can be used to control and
extend the application. Figure 1.1 shows how Tcl achieves this goal. The Tcl language
exists as a library of C procedures that can be included easily in any application. The
library procedures implement an interpreter for a simple but fully programmable lan-
guage; this language is calledthe Tcl core. The Tcl core provides a collection of commonly
used features such as variables, conditional and looping commands, procedures, associa-
tive arrays, lists, expressions, and file manipulation.

Each application can extend the Tcl core by implementing new commands that are
specific to that application. These application-specific commands are indistinguishable
from the commands in the Tcl core, but they are implemented by C procedures that are
part of the application rather than the Tcl core. With this approach, an application need
only implement a few new commands that provide the primitives for that application.
Then the commands in the Tcl core can be used to assemble the application-specific prim-
itives into more complex and powerful operations. For example, an application for reading

4 Introduction

DRAFT (10/9/92): Distribution Restricted

electronic bulletin boards might provide a command to query a bulletin board for new
messages and another command to retrieve a given message. Once these commands exist,
Tcl scripts can be written to keep track of a collection of bulletin boards, or cycle through
the new messages from all the bulletin boards and display them one at a time, or keep a
record in disk files of which messages have been read and which haven’t, or search one or
more bulletin boards for messages on a particular topic. The bulletin board application
would not have to implement any of these additional functions in C; they could all be wrt-
ten as Tcl scripts, and users of the application could write additional Tcl scripts to add
more functions to the application.

The Tcl approach has two advantages. First, Tcl makes it easy to build applications
that have powerful command languages. Even the simplest application becomes fully pro-
grammable and extensible when it is built with Tcl. Second, Tcl makes it possible for the
same language to be used in many different places, either to control different aspects of a
single application or to control entirely different applications. This uniformity makes it
easier for users since they can learn a single language and then be able to write scripts for
many different applications. The uniformity also provides great power. If different parts of
an application are all built as Tcl commands, then the different parts can work together by
exchanging Tcl commands. If a mechanism is provided to exchange Tcl commands
between applications (and Tk provides such a mechanism), then it becomes possible for
groups of applications to work together in ways that wouldn’t be possible if each applica-
tion had a different command language.

Figure 1.1.To create a new application based on Tcl, an application developer need only create the
new data structures specific to that application, plus a few new Tcl commands to manipulate the data
structures. The Tcl library provides everything else that is needed to produce a fully programmable
command language.

Built-in Commands

Application
Data Structures

Application Commands

Tcl
Interpreter

Tcl Library

Tcl-Based Application

1.2 The Tk toolkit 5

DRAFT (10/9/92): Distribution Restricted

1.2 The Tk toolkit

Tk is a toolkit for the X11 window system. It allows you to create user interfaces as collec-
tions ofwidgets, where each widget is a user-interface element such as a menu or scrollbar
or text entry. Tk allows the widgets to be connected to the rest of the application so that
actions on the widgets (such as invoking a menu entry or dragging the slider in a scrollbar)
can cause things to happen in the application. Tk also provides mechanisms for arranging
widgets into interesting groups of controls. The overall features of Tk are roughly similar
to the features of other toolkits. What makes Tk unusual is that it is based on Tcl; Tk’s fea-
tures exist as a set of Tcl commands that supplement those in the Tcl core.

It might seem that a textual command language like Tcl is the wrong thing for a win-
dowing environment, where most actions are invoked with the mouse and few users want
to type textual commands. In fact, though, a textual language is extremely useful in this
sort of environment; it just works behind the scenes. For example, menu entries and accel-
erator keys are bound to commands in the language: when a menu entry is invoked or an
accelerator key is pressed, the corresponding command is invoked. The command lan-
guage isn’t visible in normal use but it provides flexibility and power nonetheless. A user
can customize an application’s interface by changing the commands associated with the
elements of the user interface. A complex set of operations can be described with a script
in the command language and then associated with a menu entry or accelerator key so that
it can be invoked easily. Users can write scripts that are read automatically when an appli-
cation starts up and reconfigure the application’s interface to suit the user. And one appli-
cation can control another by sending the target application a command in its command
language.

The guiding philosophy for Tk is that all aspects of all interactive applications,
including both their interfaces and their functions, should be controlled by a single inter-
pretive command language. Since the language is interpretive, it can be used to modify
any aspect of an application or its interface while the application is running. Entirely new
applications can be created simply by writing Tcl scripts for a windowing shell based on
Tcl and Tk; this allows application designers to work at a higher level of programming
where new applications can be created more easily than if they had to be coded in C. The
fact that asingle language is used everywhere results in great power. It makes it easy to
connect interface actions to application functions, and it makes it easy for an application to
modify its interface while it runs. If many different application are all based on the same
language then the benefit is even greater: users need only learn a single language and will
then be able to personalize and extend all the applications; in addition, the applications can
communicate directly with each other by sending commands back and forth in Tcl.

6 Introduction

DRAFT (10/9/92): Distribution Restricted

1.3 Reading this book

Most of this book (all but Part V) is intended to be introductory in nature. Each of Parts I-
IV introduces one major aspect of Tcl and Tk, and the material is organized for smooth
reading from start to finish within each part. Parts I-IV do not cover every feature of Tcl
and Tk; instead, they focus on the major concepts and the philosophy of how to use Tcl
and Tk.

Part V contains reference documentation. It is intended to be absolutely complete, but
it is terse so it probably won’t make sense until after you’ve read the corresponding mate-
rial from Parts I-IV. Part V is organized for looking up individual pieces of information
when you’re building or modifying applications, rather than for reading from start to finish
to learn the system.

Thus I recommend reading Parts I-IV to get a general feel for how things work, but I
suggest that you refer to Part V whenever you have specific questions about any feature of
Tcl or Tk.

Part I:

The Tcl Language

8

DRAFT (10/9/92): Distribution Restricted

9

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 2
Tcl Basics

Part I of this book is about the Tcl language. This chapter describes the basic language
syntax. The other chapters in Part I describe the commands provided by the Tcl core, i.e.
those commands that will be present in every Tcl-based application. Once you’ve read
Part I you should be able to write scripts for existing Tcl-based applications.

Tcl has a simple syntax consisting of about a half-dozen rules that determine how
commands are parsed. Control structures and other features that have special syntax in
other languages are implemented as commands in Tcl, so they use the same simple syntax
rules as all other commands. For example,if andwhile are implemented as commands
in Tcl, and Tcl procedures are defined with a command namedproc .

2.1 Simple commands

A Tcl command consists of one or morewords separated by spaces or tabs. The first
word is the name of the command and additional words (if present) are arguments to that
command. Each command returns a string of zero or more characters as its result. For
example, here are two simple commands:

set a 22

22

expr 4+6

10

In this example, as in all Tcl examples in this book, Tcl commands that you type are shown
in a computer-like typeface and the results of commands are shown in an underlined type-

GURE 2

ABLE 2

10 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

face. Results may be omitted in examples if they are empty or unimportant to the example.
The first command in the above example has three words:set , a, and22 . It causes the
set command to be invoked with two arguments,a and22 . Set treats its first argument
as the name of a variable and its second argument as a new value for that variable. It
assigns the new value (22) to the variable (a) and returns the new value as result. The sec-
ond command has two words,expr and4+6 . It causes theexpr command to be invoked
with a single argument.Expr treats its argument as an arithmetic expression, evaluates
that expression, and returns the value as a decimal string.

Each Tcl command is free to interpret its arguments in any way it pleases. For exam-
ple, theset command expects its first argument to be the name of a variable while the
expr command expects its first (and only) argument to be an arithmetic expression. It is
possible to specify any string value as an argument for any command, but some com-
mands expect their arguments to have particular forms. Theset command allows either
of its arguments to be an arbitrary string, whereas theexpr command will generate an
error if its argument isn’t a proper expression.

Spaces and tabs are usually significant in commands since they act as word separators
(later in this chapter you’ll see how to prevent this effect). If theexpr example had been
typed as

expr 4 + 6
(with spaces on either side of the +) then theexpr command would receive three argu-
ments:4, +, and6. In this caseexpr would generate an error, since it expects to receive
only a single argument. If there are multiple spaces or tabs in a row, they act together as a
single word separator.

2.2 Command terminators

A Tcl script consists of one or more commands. Commands are normally separated by
newline characters. For example,

set a abcd
set b efg

is a script with two commands separated by a newline. The first command sets the value of
variablea and the second sets the value of variableb. Commands may also be separated
by semi-colons; this allows multiple commands to be placed on a single line. For example,
the script

set a abcd; set b efg

has the same effect as the preceding example. The newline and semi-colon characters are
removed by the Tcl parser and are not included in the arguments passed to the commands.

There are times when you’ll want to include newline and semi-colon characters as
part of command words, and to do this you’ll need to prevent them from being interpreted
as command terminators. You’ll see how to do this later in the chapter.

2.3 Normal and exceptional returns 11

DRAFT (10/9/92): Distribution Restricted

2.3 Normal and exceptional returns

A Tcl command can terminate in several different ways. Anormal return is the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tcl also supportsexceptional returns from commands. The most frequent
form of exceptional return is an error, such as the case above whereexpr received more
than one argument. When an error return occurs, it means that the command could not
complete its intended function. The Tcl command is aborted and any commands that fol-
low it in the script are skipped. An error return includes a string identifying what went
wrong; this string is normally printed out for the user by the application.

The complete exceptional return mechanism for Tcl is discussed in Chapter 8. It
includes a number of exceptional returns other than errors, provides additional informa-
tion about errors other than the error message mentioned above, and allows errors to be
“caught” so that effects of the error can be contained within a piece of Tcl code. For now,
though, all you need to know is that commands normally return string results but they
sometimes return errors that cause Tcl command interpretation to be aborted.

2.4 Variable substitution

Tcl provides three forms ofsubstitution, each of which causes the contents of a command
word to be modified in some way. Substitutions may occur in any word of a command,
including the command name. Tcl also provides mechanisms for preventing substitutions,
which are described in Sections 2.6-2.8 below.

The first form of substitution isvariable substitution. It is triggered by a dollar-sign
character and it causes the value of a Tcl variable to be inserted into a command word. For
example, consider the following commands:

set a 8
set b $a

8

The first command sets the value of variablea to 8 (it returns the string8, which isn’t
shown). In the second command, the string$a causes variable substitution to occur.
Instead of receiving$a as its second argument, theset command receives8 (the value of
variablea).

In the above example the variable was the only thing in the word where substitution
occurred. However, it is also possible for variable substitution to affect only a part of a
word, leaving the rest of the word unaffected. Here is a simple example:

set a 6
set b2 4
expr ($b2+2)*$a

36

12 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

In theexpr command the string$b2 is replaced with the value of variableb2 and the
string$a is replaced with the value of variablea, so thatexpr receives(4+2)*6 as its
argument. When variable substitution occurs, the variable name consists of everything
after the dollar-sign up to the first character that isn’t a number, letter, or underscore. In the
example above, the first variable name ends just before the + character and the second
variable name ends just before the newline that terminates the command. Any number of
variable substitutions may occur within a single word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to permit characters other than numbers, letters, or digits in variable names. These
other forms are discussed in Chapter 3.

2.5 Command substitution

The second form of substitution provided by Tcl iscommand substitution. Command sub-
stitution causes part or all of a command word to be replaced with the result returned by
another Tcl command. Command substitution is invoked with square brackets:

set a 14
set a [expr $a+2]

16

When an open square bracket appears in a command word, the information following the
open bracket must be a Tcl script followed by a close bracket. If the script contains more
than one command, the commands are separated by newlines or semi-colons in the usual
fashion. Thus in the example above theexpr command is executed while parsing the
words forset ; when the set command is eventually executed, its second argument will be
16 .

As with variable substitution, command substitution can occur anywhere in a word
and there may be more than one command substitution within a single word. The square
brackets determine the range of characters replaced in each command substitution: the
command for a given substitution ends at the matching close square bracket. A single
word may contain both command and variable substitutions, and nested commands may
themselves contain additional substitutions of any form, as in the following example:

set frac 2
set int 4
set num [expr $int+2].[expr $frac+1]

6.3

Command and variable substitutions are always performed in order from left to right.
If an error or other exceptional return occurs within a nested command, then the entire

chain of partially evaluated commands is aborted. For example, if the last command above
had been

2.6 Backslash substitution 13

DRAFT (10/9/92): Distribution Restricted

set num [expr $int + 2].[expr $frac+1]

then the firstexpr command would return an error (the extra spaces around+ result in
too many arguments toexpr) and neither the secondexpr command nor the enclosing
set command would be executed.

2.6 Backslash substitution

The final form of substitution in Tcl isbackslash substitution. It is used to prevent special
interpretation of characters like [and$ and space so that they can be inserted into words.
For example, consider the following command:

set a 1\ 2\$\ 3\[

1 2$ 3[

There are two sequences of backslash followed by space; each of these sequences is
replaced in the word by a single space, and the space characters are not treated as word
separators. The backslash followed by dollar-sign is replaced with a single dollar-sign (no
variable substitution is triggered) and the backslash followed by open square bracket is
replaced in the word with the open square bracket (no command substitution is per-
formed). Any character that has special interpretation in Tcl, including backslash, can be
backslashed to prevent that special interpretation. This includes both the special characters
discussed so far and those to be discussed in the remainder of this chapter.

Backslash substitution can also be used to insert non-printing characters into words.
For example,\n is replaced with a newline character and\b is replaced with a backspace
character. Tcl supports all of the backslash sequences supported by the C compiler for
strings. See Table 2.1 for a complete listing of the backslash sequences supported by Tcl.

The sequence backslash-newline has special significance. When the last character on
a line is a backslash then both the backslash and the following newline are ignored; the
result is to join the line containing the sequence to the line following it, preventing the
newline character from acting as a command terminator. For example, the script

set a A\ very\ \
long\ string

A very long string

is identical in effect to the command

set a A\ very\ long\ string

A very long string

Unlike other backslash sequences, backslash-newline is replaced by nothing. Backslash-
newline is also special in that it is handled even when it occurs between braces, which are
described in Section 2.8.

14 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

If a backslash is followed by one of the characters not in Table 2.1, then the backslash
receives no special treatment: both the backslash and the following character will appear
in the word.

2.7 Quoting with double-quotes

In addition to the substitutions described in the previous sections, Tcl supports two
forms ofquoting. When a word of a command is quoted then some or all of the special
characters lose their special meaning: they are passed through to the command just like
other characters. Tcl provides two forms of quoting: double-quotes and curly braces. Dou-

Table 2.1.Backslash substitutions supported by Tcl. When one of the given backslash sequences
appears in a word of a Tcl command, the sequence is replaced by the corresponding string in the
right column. The termsspace andnewline refer to the space and newline characters.ddd refers
to any 1, 2, or 3 octal digits.

Backslash Sequence Replaced By

\b Backspace (0x8)

\t Tab (0x9)

\e Escape (0x1b)

\n Newline (0xa)

\r Carriage-return (0xd)

\{ Left brace (“{ “)

\} Right brace (“} ”)

\[Open bracket (“[“)

\] Close bracket (“] ”)

\$ Dollar sign (“$”)

\ space Space (“ ”)

\; Semi-colon

\" Double-quote (0x22)

\\ Backslash (“\ ”)

\ newline Nothing

\ ddd Octal value given byddd

2.8 Quoting with curly braces 15

DRAFT (10/9/92): Distribution Restricted

ble-quotes only disable a few of the special characters, while curly braces disable almost
all special characters.

If the first character of a word is a double-quote character then the word consists of
everything after the double-quote up to the next double-quote character. Within the word,
neither spaces, tabs, newlines, or semi-colons have special interpretation; they are treated
just like other characters. Double-quotes provide a convenient way to specify words that
contain white space without having to type lots of unsightly backslashes. For example, the
following command sets variablea to a value containing several spaces:

set a "A long string with spaces"

A long string with spaces

Notice that the quotes themselves are not passed through to the command in the argument
word.

Variable substitutions, command substitutions, and backslash substitutions are still
performed within double-quotes, as in the following example:

set a 24
set b "if a is $a then a+4 is [expr $a+4]"

if a is 24 then a+4 is 28

To include a double-quote within a double-quoted word, use backslash substitution:

set a "word contains \" char."

word contains " char.

A double-quote character only has special interpretation when it is the first character
of a word. If the first character of a word isn’t a double-quote then double-quotes are
treated like ordinary characters within that word. Thus the following example generates an
error because it results in three arguments for theset command:

set a two" words"

In this case the three arguments area andtwo" andwords" .

2.8 Quoting with curly braces

Curly braces provide a more radical form of quoting. If the first character of a word is an
open curly brace, then the word consists of everything up to the matching close curly
brace (not including the braces themselves). There may be nested curly braces within the
word. Within the word no substitutions or special interpretations occur whatsoever except
that (a) backslashed curly braces are not considered in the search for the closing brace and
(b) backslash-newline substitutions are made as described in Section 2.6. Curly braces
provide a convenient way to specify arguments that contain characters like$ and[with-
out having to type backslashes.

16 Tcl Basics

DRAFT (10/9/92): Distribution Restricted

Braces are most commonly used for lists and nested commands. For example, the fol-
lowing command sets variablea to a list containing three elements of which the middle
element is itself a list with two elements:

set a {a {b c} d}

a {b c} d

Lists are discussed in detail in Chapter 5. The second common use for curly braces is
specifying a Tcl program as an argument to a command. This is used for control structures
like if andwhile , as in the following example:

set result 1
set i 5
while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

}

This program computes the factorial of 5, leaving the value in variableresult . The
while command receives two arguments:$i>0 and everything between the curly braces
(an initial newline, two commands separated by newlines, and a final newline). The
while command evaluates its first argument as an expression and if the result is non-zero
then it executes its second argument as a nested Tcl script and repeats this process over
and over until the first argument evaluates to zero. For this script to operate correctly it is
essential that the variables and commands in the arguments not be evaluated before the
while command is executed, but rather be evaluated repeatedly during the execution of
the command. Curly braces achieve just this effect by passing the$ and[characters
through to thewhile command so they can be evaluated during the execution of the
command.

 For comparison, consider the following example where double-quotes are used
instead of braces:

set result 1
set i 5
while "$i > 0" "

set result [expr $result*$i]
set i [expr $i-1]

"

In this case, the first argument towhile is

5 > 0

and the second argument is

set result 5
set i 4

In this case the substitutions have all been made before thewhile command is invoked.
The loop will never terminate, sincewhile ’s first argument is a constant expression that

2.9 Comments 17

DRAFT (10/9/92): Distribution Restricted

always evaluates to non-zero. The body of the loop behaves exactly the same from itera-
tion to iteration, since all the arguments to all the commands are now constants.

See Chapter 6 for more details on control structures.

2.9 Comments

The comment character in Tcl is the hash-mark (#). If the first non-blank character of a
command is# then the# and all the characters following it up through the next newline
are treated as comments and discarded. Note that the hash-mark must occur in a position
where Tcl is expecting the first character of a command. If a hash-mark occurs anywhere
else then it is treated as an ordinary character that forms part of a command word.

Because of the way curly braces and hash-marks are processed, confusion can some-
times occur when comments appear within curly braces. For example, the following
example cannot be parsed correctly by Tcl:

while {$i > 0} {
Comment with {
set result [expr $result*$i]
set i [expr $i-1]

}

The problem with this example is that the hash-mark isn’t treated as a comment character
when the second argument towhile is being processed; at the time the argument is pro-
cessed Tcl doesn’t even know that it contains a nested command. Because of this, the open
curly brace in the comment is considered to be significant, and Tcl can’t find enough close
curly braces to complete the word; an error results. The solution in this case is to add a
backslash before the brace in the comment so that it isn’t counted when parsing the argu-
ment towhile .

18

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 3
Variables

Like virtually all programming languages, Tcl allows you to use variables for storing
information. Tcl supports two kinds of variables: simple variables and arrays. Variable
names and variable values are both strings. This chapter describes the basic Tcl commands
for manipulating variables and arrays, and the substitution mechanism that allows variable
values to be passed to commands. See Table 3.1 for a summary of the commands dis-
cussed in this chapter.

3.1 Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named “xyz !# 22 ” or “March earnings: $100,472 ”. In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores. It will be easier to use the variable substitution mechanism if you restrict yourself
to these characters.

Variables may be created, read, and modified with theset command.Set takes
either one or two arguments. The first argument is the name of a variable and the second, if
present, is a new value for the variable:

set a "three word value"

three word value

set a

three word value

GURE 3

ABLE 3

3.1 Simple variables and the set command 19

DRAFT (10/9/92): Distribution Restricted

set a 44

44

The first command above creates a new variablea if it doesn’t already exist and sets its
value to the character sequence “three word value ”. The result of the command is
the new value of the variable. Tcl variables are created automatically when they are
assigned values; there is no mechanism for declaring variables in Tcl except to access glo-
bal variables inside procedures (see Chapter 7).

The secondset command has only one argument:a. In this form it simply returns
the value of the named variable without changing its value.

The thirdset command changes the value ofa to 44 and returns that new value.
Although the value looks like a decimal integer, it is stored as an ASCII string. Tcl vari-
ables can be used to represent many things, such as integers, floating-point numbers,
names, lists, and Tcl programs, but they are always stored as strings. This use of a single
representation for all values is one of the sources of Tcl’s power, since it allows all of these
different values to be manipulated in the same way and interchanged.

An error will occur if you attempt to read the value of a non-existent variable. For
example, if there is no variablebadName then the following command produces an error:

set badName

can’t read "badName": no such variable

append varName value ?value ...?
Append each of thevalue arguments to variablevarName , in order. If
varName doesn’t exist then it is created with an empty value before
appending. The appending is done in an efficient way that avoids copying the
variable’s old value. The return value is the new value ofvarName .

incr varName ?increment ?
Add increment to the value of variablevarName . Increment and the
old value ofvarName must both be integer strings (decimal, hexadecimal,
or octal). Ifincrement is omitted then it defaults to1. The new value is
stored invarName as a decimal string and returned as the result of the com-
mand.

set varName ?value ?
If value is specified, set the value of variablevarName to value . In any
case, return the current value of the variable.

unset varName ?varName varName ...?
Remove the variables given by thevarName arguments. Returns an empty
string.

20 Variables

DRAFT (10/9/92): Distribution Restricted

3.2 Arrays

In addition to simple variables Tcl also providesarrays. An array is a collection of related
variables. Each element of an array is a variable with its own name and value. The name
of an array element has two parts: the name of the array and the name of the element
within that array. Both array names and element names may be arbitrary strings; for this
reason Tcl arrays are sometimes calledassociative arrays to distinguish them from arrays
in other languages where the element names must be integers.

Array elements are referenced using notation likeearnings(January) where the
array name (earnings in this case) is followed by the element name in parentheses
(January in this case). Arrays may be used anywhere that simple variables may be used,
such as in theset command:

set earnings(January) 87966

87966

set earnings(February) 95400

95400

set earnings(January)

87966

The first command creates an array namedearnings , if it doesn’t already exist. Then it
creates an elementJanuary within the array, if it doesn’t already exist, and assigns it the
value87966 . The second command assigns a value to theFebruary element of the
array, and the third command returns the value of theJanuary element.

Arrays are similar to simple variables in that you can’t use an array value until it has
been set. Furthermore, each variable is either a simple variable or an array: an error will
occur if you attempt to use a simple variable as an array or vice versa.

3.3 Variable substitution

Chapter 2 has already introduced the use of$-notation for substituting variable values
into Tcl commands. This section describes the mechanism in more detail. Strictly speak-
ing, variable substitution isn’t necessary since you can achieve the same effect using com-
mand substitution with theset command. However, variable substitution is useful
because it saves typing and makes Tcl programs more concise and readable.

Variable substitution is triggered by the presence of an unquoted$ character in a Tcl
command. The characters following the$ are treated as a variable name, and the$ and
name are replaced in the command’s word by the value of the variable. The program
below shows a simple example of variable substitution:

set a 44
set b $a

3.3 Variable substitution 21

DRAFT (10/9/92): Distribution Restricted

44

Variable substitution can also occur in more complex situations where it is less obvi-
ous how it should behave. For example, consider the following command:

expr $a+2

Is the name of the variablea, which makes the most sense in this case, ora+2? There are
actually three forms of variable substitution, each with slightly different behavior.

The commands above are all examples of the first form, which is the simplest and
most common of the forms. In this form the$ is followed by a sequence of letters and dig-
its and underscores; the variable name consists of all the characters up to the first one that
isn’t a letter or digit or underscore. This means that the variable namea is used in the expr
example above, and the argument to theexpr command is44+2 (assuming thata has the
value44).

The second form allows array values to be substituted. This form is like the first one
except that the character just after the variable name is an open parenthesis. In this case all
of the characters up to the next close parenthesis are taken as the name of an element
within the array, and the value of that element is substituted:

set earnings(January) 87966
set x "--- $earnings(January) ---"

--- 87966 ---

The element name (everything between the parentheses) is parsed in the same way as
a command word in double-quotes: variable substitution, command substitution, and
backslash substitution are performed, and there may be spaces in the element name. This
means, for example, that you can compute the name of an array element and insert that
computed value in the element name during substitution:

set earnings(January) 87966
set month January
set x $earnings($month)

87966

The above rules for parsing elements lead to an unfortunate inconsistency. A space in
an element name is not treated as a word separator during variable substitution, so the fol-
lowing command is perfectly legitimate, assuming that there exists an arraycurrency
with an element namedGreat Britain :

set x $currency(Great Britain)

However, if the same element name is used as the target in aset command then the space
is significant and an error occurs:

set currency(Great Britain) pound

wrong # args: should be "set varName ?newValue?"

The error occurs because the Tcl parser uses its normal rules for parsing the first agument
to set . It has no idea that this argument is the name of an array element, and the argument

22 Variables

DRAFT (10/9/92): Distribution Restricted

isn’t enclosed in quotes or braces, so it treats the space character as a word separator. As a
result, theset command receives three arguments and generates an error. The solution in
this case is to surround the first argument with braces or quotes.

The last form of variable substitution is intended for situations where you wish to sub-
stitute a variable value in the middle of a string of letters or digits, or just before an open
parenthesis. For example, suppose that you wish to substitute the value of variablez just
after thex in xxxyyy . The following command won’t work because it includes too many
characters in the variable name:

set y xxx$zyyy

can’t read "zyyy": no such variable

To get around this problem Tcl allows you to enclose the variable name in curly
braces in variable substitution. When this happens the variable name is exactly what is
between the braces. No substitutions of any sort are made on the characters between the
braces and no special interpretation is given to the characters between the braces. Braces
provide a simple solution to the problems above:

set z 123
set y xxx${z}yyy

xxx123yyy

Curly brace notation can only be used for simple variables, but it shouldn’t be needed for
arrays anyway, since the parentheses already indicate where the variable name ends.

Tcl’s variable substitution mechanism is only intended to handle the most common
situations; it’s possible to imagine scenarios where none of the above forms of substitution
achieves the desired effect. Fortunately, these situations can be handled by using com-
mand substitution in conjunction with theset command. Tcl also provides many other
ways to deal with these situations, such as theeval andformat commands; these tech-
niques will be described in later chapters.

3.4 Removing variables: unset

It is possible to remove variables using theunset command. This command takes
any number of arguments, each of which is a variable name. Each of the named variables
is destroyed: future attempts to read the variables will result in errors just as if the vari-
ables had never been set in the first place. The arguments tounset may be either simple
variables, elements of arrays, or whole arrays, as in the following example:

unset a earnings(January) b

In this case the variablesa andb are removed entirely and theJanuary element of the
earnings array is removed. Theearnings array continues to exist after theunset
command. Ifa or b is an array then all of the elements of that array are removed along

3.5 Multi-dimensional arrays 23

DRAFT (10/9/92): Distribution Restricted

with the array itself. Each of the variables named in anunset command must exist at the
time the command is invoked or else an error occurs.

One convenient use ofunset is to convert a simple variable into an array or vice
versa. For example, consider the following program:

set a 44
set a(12) 100

can’t set "a(12)": variable isn’t array

unset a
set a(12) 100

100

The first attempt to seta(12) fails becausea is a simple variable rather than an array.
After the variable has beenunset , the secondset succeeds, re-creatinga as an array
variable. Of course, at this point it is no longer possible to referencea as a simple variable.

3.5 Multi-dimensional arrays

The implementation of arrays in Tcl uses only a single element name in each reference,
but it is easy to make Tcl arrays behave as if they are multi-dimensional. To do this, just
use element names that consist of two or more independent parts concatenated together.
The program below simulates a two-dimensional array indexed with integers:

set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
set i 1
set j 2
expr $matrix($i,$j)+12

230

In this examplematrix is an array with three elements whose names are1,1 and
1,2 and1,3 . However, the array behaves just as if it were a two-dimensional array; in
particular, variable substitution occurs while scanning the element name in theexpr
command, so that the values ofi andj get combined into an appropriate element name.

This example illustrates the power that derives from using textual strings everywhere
in Tcl. Even though the basic language facilities are very simple, it is possible to achieve
powerful effects by composing strings in interesting ways. In this case, element names are
composed in a way that simulates multi-dimensional arrays. You’ll see other interesting
ways of composing strings later in conjunction with commands such aseval .

24 Variables

DRAFT (10/9/92): Distribution Restricted

3.6 The incr and append commands

Incr andappend provide simple ways to change the value of a variable.Incr takes
two arguments, which are the name of a variable and a number; it adds the number to the
variable, stores the result back into the variable as a decimal string, and returns the vari-
able’s new value as result:

set x 43
incr x 12

55

The number can have either a positive or negative value. It can also be omitted, in which
case it defaults to1:

set x 43
incr x

44

Both the variable’s original value and the increment must be integer strings, either in deci-
mal, octal (indicated by a leading0), or hexadecimal (indicated by a leading0x).

Theappend command adds text to the end of a variable. It takes two arguments,
which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the variable’s new value:

set x cat
append x dog

catdog

Theappend command doesn’t add any new functionality to Tcl, since the same effect
can be achieved with aset command:

set x "${x}dog"

catdog

The main reason forappend is efficiency.Append is implemented in a particularly effi-
cient way that avoids copying the value of the variable. In contrast, theset approach
requires the current contents of the variable to be copied twice: once when creating the
argument toset and again to store it into the variable. For normal small variables the
copying costs are insignificant, but when manipulating variables with thousands or tens of
thousands of charactersappend will be substantially faster than other approaches.

3.7 Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These commands
will be introduced in full after you’ve learned more about the Tcl language, but this sec-
tion contains a short preview of some of the facilities.

3.7 Preview of other variable facilities 25

DRAFT (10/9/92): Distribution Restricted

Thearray command can be used to find out the names of all the elements in an
array and to step through them one at a time (see Section 13.1). It’s possible to find out
what variables exist using theinfo command (see Section 13.2).

Thetrace command can be used to monitor a variable so that a Tcl program gets
invoked whenever the variable is set or read or unset. Variable tracing is convenient during
debugging, and it allows you to create read-only variables. You can also use traces for
propagation so that, for example, a database or screen display gets updated whenever a
variable changes value. Variable tracing is discussed in Section 13.4.

The discussion of variables so far has assumed a single global space of variables with
every variable visible in all the Tcl code of an application. After procedures are introduced
in Chapter 7 you’ll see that Tcl actually provides two kinds of variables: global ones and
local variables for procedures. Chapter 7 will show how a procedure can access variables
other than its own local variables.

26

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 4
Expressions

Tcl is a typeless string-oriented language, which means that in general you can pass any
sequence of characters as an argument to any command. Many of the commands, such as
set , are perfectly happy with any argument value whatsoever. However, there are many
other commands that expect some of their arguments to have particular forms. Three
forms are particularly common in Tcl: expressions, lists, and Tcl scripts. This chapter
shows how to write expressions, Chapter 5 discusses lists, and Chapter 6 describes how
Tcl scripts are embedded in commands likeif .

4.1 Introduction and the expr command

Expressions combine values (oroperands) with operatorsto produce new values. For
example, the expression4+2 evaluates to6 and the expression(8+4)*6.2 evaluates to
74.4 . Many Tcl commands expect one or more of their arguments to be expressions. The
simplest such command isexpr , which does nothing but evaluate an expression and
return the result as a string:

expr (8+4)*6.2

74.4

Many other Tcl commands also take expressions as arguments. For example, theif
command evaluates an expression and uses the result to determine whether or not to exe-
cute a nested Tcl script:

if $x<2 then {set x 2}

GURE 4

ABLE 4

4.2 Operands and substitutions 27

DRAFT (10/9/92): Distribution Restricted

In this example the commandset x 2 will be executed if the expression$x<2 evalu-
ates to a non-zero result.

In most cases the operands for expressions are numbers (either integers like 24 or
floating-point numbers like 16.5). A few of the operators allow their operands to be arbi-
trary strings; this allows string comparisons to be performed easily inside expressions (see
Section 4.3.2).

4.2 Operands and substitutions

Operands for Tcl expressions may be specified in several ways. The simplest form consists
of integers. Integers are normally specified in decimal, but if the first character of the num-
ber is0 then the number is read in octal (base 8) and if the first two characters are0x then
the number is is read in hexadecimal (base 16). For example,335 is a decimal number,
0517 is an octal number with the same value, and0x14f is a hexadecimal number with
the same value.

Operands may also be specified as floating-point numbers. Tcl accepts any of the
forms defined for the ANSI C standard except that the f, F, l, and L suffixes are not sup-
ported. All of the following are valid floating-point numbers:

2.1
7.91e+16
6E4
3.

Tcl treats numbers as integers whenever possible. To force an integer value to be repre-
sented in floating-point form, add a decimal point as in the last example above. Floating-
point numbers are manipulated using double-precision format.

It is possible to perform variable substitutions and command substitutions on expres-
sions using the standard Tcl facilities for command-line substitution:

set x 2.0
expr $x-0.8

1.2

expr [set x]-0.8

1.2

The actual argument received by theexpr command is1.2-0.8 in both cases.
The Tcl expression evaluator also performs variable substitution and command sub-

stitution on its own, as in the following examples:

set x 2.0
expr {$x-0.8}

1.2

expr {[set x] - 0.8}

28 Expressions

DRAFT (10/9/92): Distribution Restricted

1.2

In these examples the curly braces prevent any substitutions before theexpr command is
invoked; the substitutions are carried out by the expression evaluator.

It’s important for the expression evaluator to perform substitutions because in many
cases expressions are not evaluated immediately, but rather saved for later evaluation or
evaluated repeatedly. When this happens it is usually important to evaluate variables or
execute embedded commands at the time the expression is evaluated rather than the time
the command containing the expression is invoked. For example, consider the following
program, which computes a power of a particular base:

set result 1
while {$power>0} {

set result [expr $result*$base]
incr power -1

}

Thewhile statement repeatedly evaluates its first argument as an expression then exe-
cutes the second argument as a Tcl command, as long as the first argument evaluates to
non-zero (see Chapter 6 for details). It is essential that the first argument towhile be
enclosed in braces so that the argument received by thewhile command is$power>0 .
Without the braces the value of$power would be substituted before thewhile com-
mand is invoked and the value of the expression would not change from iteration to itera-
tion; an infinite loop would occur if the initial value of$power were greater than 0. On
the other hand, braces are not needed in theexpr command inside the loop: the braces
around the loop body prevent substitutions beforewhile is invoked and it doesn’t matter
whether the variable substitutions occur before theexpr command is invoked or while it
computes its result.

One of the most important things in learning Tcl is to understand when and how sub-
stitutions occur. Substitutions occur before each command is invoked, as described in
Chapter 2, but some commands perform additional substitutions after they are invoked. In
the case of theexpr command there are two different times when substitutions can occur.
One round occurs when the command is broken up into words before invocation, and the
second round occurs for the second word of the command when it is evaluated as an
expression. In most cases the second round of substitutions is sufficient for an expression
and the first round is likely to cause more harm than good, so it is common to see expres-
sions enclosed in braces when they appear in Tcl commands.

Expression operands may also be specified as character strings enclosed in double-
quotes or curly braces. If an operand is enclosed in quotes then variable substitutions,
command substitutions, and backslash substitutions are performed on the information
between the quotes just as for commands. If the operand is enclosed in braces then no sub-
stitutions are performed on the characters between the braces, again just as for commands.
Double-quotes and braces are most useful when performing string comparisons as

4.3 Operators and precedence 29

DRAFT (10/9/92): Distribution Restricted

described in Section 4.3.2 but they can also be used to achieve exotic arithmetic effects, as
in the following example:

set tens 2
set ones 1
set fraction 6
expr {"$tens$ones.$fraction" + 3.0}

24.6

Again, these substitutions are performed by the expression evaluator in addition to any
substitutions that occurred when the command was parsed.

When the expression evaluator performs variable substitutions, or when it processes
double-quotes or curly braces, each such operation yields a single operand. The results of
the substitution or quoting are not rescanned for additional substitutions or embedded
operators. Because of this behavior, both of the following programs produce errors:

set x 4+2
expr {$x+4}

can’t use non-numeric string as operand of "+"

expr {"2".4 + 3}

syntax error in expression ""2".4 + 3"

In the first case the substitution for$x yields4+2 , which isn’t a valid numeric operand. In
the second case, the quoted string yields 2 , which is a valid numeric operand, but it is
treated as a complete operand by itself and is not combined with the characters following
it to produce2.4 . Instead the expression parser sees two numbers in a row (2 and.4)
with no intervening operator, which is an error.

4.3 Operators and precedence

Table 4.1 lists all of the operators supported in Tcl expressions; they are similar to the
operators in C expressions. Horizontal lines separate groups of operators with the same
precedence, and operators with higher precedence appear in the table above operators with
lower precedence. For example,4*2<7 evaluates to0 because the* operator has higher
precedence than<. Except in the simplest and most obvious cases, I recommend that you
use parentheses to indicate the way operators should be grouped; this will prevent errors
by you or by others who modify your programs.

Operators with the same precedence group left to right. For example,4*5%2 evalu-
ates to0.

4.3.1 Arithmetic operators

Tcl expressions support the standard arithmetic operators including+, - , * , / , and%. The
- operator may be used either as a binary operator for subtraction, as in4-2 , or as a unary

30 Expressions

DRAFT (10/9/92): Distribution Restricted

Table 4.1.Summary of the operators allowed in Tcl expressions. These operators have the same
behavior as in C except that some of the operators allow string operands. Groups of operands
between horizontal lines have the same precedence; higher groups have higher precedence.

Syntax Result Operand Types

- a Negative ofa int, float

a Logical NOT: 1 ifa is zero, 0 otherwise int, float

- a Bit-wise complement int

a* b Multiply a andb int, float

a/ b Divide a by b int, float

a%b Remainder after dividinga by b int

a+b Add a andb int, float

a- b Subtractb from a int, float

a<<b Left-shift a by b bits int

a>>b Arithmetic right-shifta by b bits int

a<b 1 if a is less thanb, 0 otherwise int, float, string

a>b 1 if a is greater thanb, 0 otherwise int, float, string

a<=b 1 if a is less than or equal tob, 0 other-
wise

int, float, string

a>=b 1 if a is greater than or equal tob, 0 oth-
erwise

int, float, string

a==b 1 if a is equal tob, 0 otherwise int, float, string

a!= b 1 if a is not equal tob, 0 otherwise int, float, string

a&b Bit-wise AND ofa andb int

a^b Bit-wise exclusive OR ofa andb int

a/ b Bit-wise OR ofa andb int

a&&b Logical AND: 1 if botha andb are non-
zero, 0 otherwise

int, float

a|| b Logical OR: 1 if eithera is non-zero orb
is non-zero, 0 otherwise

int, float

a?b: c Choice: ifa is non-zero thenb, elsec a : int, float

4.3 Operators and precedence 31

DRAFT (10/9/92): Distribution Restricted

operator for negation, as in-(6*$i) . The/ operator truncates its result to an integer
value if both operands are integers.% is the modulus operator: its result is the remainder
when its first operand is divided by the second. Both of the operands for% must be inte-
gers. The behavior of/ and% for negative operands is the same in Tcl as in C. This means
that the sign of the remainder and the direction of truncation are machine-dependent if
either operand is negative. However, / and% are always consistent: ifa/b is c anda%b
is d, then(b*c)+d will be equal toa.

4.3.2 Relational operators

The operators< (less than),<= (less than or equal),>=(greater than or equal),> (greater
than),== (equal), and!= (not equal) are used for comparing two values. Each operator
produces a result of1 (true) if its operands meet the condition and0 (false) if they don’t.

The relational operators may be applied not only to numbers but also to arbitrary
strings. If both of the operands are numbers then the comparison is done numerically. If
either or both of the operands doesn’t make sense as a number then the operands are com-
pared as strings using lexicographic ordering, as in the following examples:

expr {"abc" < "abcd"}

1

expr {2.4 >= "abcd"}

0

4.3.3 Logical operators

The logical operators&&, || , and! are typically used for combining the results of
relational operators, as in the expression

($x > 4) && ($x < 10)

Each operator produces a0 or 1 result.&& (logical “and”) produces a1 result if both its
operands are non-zero,|| (logical “or”) produces a1 result if either of its operands is
non-zero, and! (“not”) produces a1 result if its single operand is zero.

In Tcl, as in C, a zero value is treated as false and anything other than zero is treated
as true. Whenever Tcl generates a true/false value it uses1 for true and0 for false.

The operators&& and || are special in that they always evaluate their left operand
first and only evaluate the right operand if needed to determine the result (e.g. if the left
operand is non-zero for&& or zero for||). This behavior is useful in situations where the
right operand sometimes generates errors during evaluation. For example, consider the
following command:

expr {[info exists x] && ($x<2)}

This command returns1 if the variablex is defined and has a value less than2, and it
returns0 otherwise. Command substitution causes the left operand of&& to be1 if x
exists and0 if it doesn’t. In the case wherex doesn’t exist, an error would occur if

32 Expressions

DRAFT (10/9/92): Distribution Restricted

($x<2) were evaluated, but this is guaranteed never to happen. This example shows once
again the importance of performing substitutions during expression evaluation instead of
during command parsing: if the braces were replaced with double-quotes then both the
command substitution and the variable substitution would be performed by the Tcl com-
mand parser before invoking theexpr command and an error would be generated ifx
doesn’t exist.

4.3.4 Bitwise operators

Tcl provides six operators that manipulate the individual bits of integers:&, | , ^ , <<, >>,
and~. These operators require both of their operands to be integers. The&, | , and^ oper-
ators perform bitwise and, or, and exclusive or: each bit of the result is generated by apply-
ing the given operation to the corresponding bits of the left and right operands. Note that&
and| do not always produce the same result as&& and|| :

expr 8&&2

1

expr 8&2

0

The operators<< and>> use the right operand as a shift count and produce a result
consisting of the left operand shifted left or right by that number of bits. During left shifts
zeroes are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,
meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This
behavior is different from right-shifting in C, which is machine-dependent.

The~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa.

4.3.5 Choice operator

The operator pair?: may be used with three operands to select one of two results:

expr {($a < $b) ? $a : $b}

This expression returns the smaller of$a and$b . The choice operator checks the value of
its first operand for truth or falsehood. If it is true (non-zero) then the argument following
the? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second and third arguments
is evaluated.

4.4 Types and conversions 33

DRAFT (10/9/92): Distribution Restricted

4.4 Types and conversions

All of the expression operators accept integers as operands. The arithmetic operators
+, - , * , and/ accept floating-point operands as well. If one operand is an integer and the
other is a floating-point number, then the integer is converted to floating-point and the
result will be in floating-point. Floating-point numbers are manipulated using double-pre-
cision representation.

The logical operators! , &&, and|| also accept floating-point arguments as well as
integers. They test their arguments to see if they are equal to zero and set their results
accordingly.

The relational operators <, <=, >=, >, ==, and != accept operands of any form. If both
operands are integers then the comparison is done using integer arithmetic. If both oper-
ands are numeric but at least one of them is floating-point then the comparison is done
using floating-point arithmetic. When one or both of the operands cannot be read as either
an integer or a floating-point number, then the comparison is done using lexicographic
string comparison. In this case numeric operands are converted back to strings using%d
format for integers and%g format for floating-point numbers (see theformat command
in Section 9.1 for a description of these formats).

All operators other than the ones mentioned above require their arguments to be inte-
gers. An error will occur if an argument does not have the proper form for an integer.

When including non-numeric strings in an expression you must use variable substitu-
tion, double-quotes, or braces. If you attempt to enter a non-numeric string directly then an
error will occur, as in the following example:

expr {$x != red}

syntax error in expression "$x != red"

Tcl treats this as an error because in most cases when it happens the user has forgotten to
type the$ in front of a variable name; if the name were accepted as a literal string then it
would result in confusing errors in many cases.

34

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 5
Lists

Lists in Tcl provide a simple mechanism for dealing with collections of things, such as all
the users in a group or all the files in a directory or all the options for a widget. With lists
you can easily collect together any number of values in one place, pass around the collec-
tion as a single entity, and later get the component values back again. A list is an ordered
collection of elements where each element can have any string value, such as a number, a
person’s name, the name of a window, or a word of a Tcl command. Lists are represented
as strings with particular structure; this means that you can store lists in variables, type
them to commands, and even nest them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elements (see Table 5.1 for a summary).
There are other Tcl commands besides those described in this chapter that take lists as
arguments or return them as results; these other commands will be described in later chap-
ters.

5.1 Basic list structure and the lindex command

In its simplest form a list is a string containing any number ofelements separated by
spaces or tabs. For example, the string

John Anne Mary Bob

GURE 5

ABLE 5

5.1 Basic list structure and the lindex command 35

DRAFT (10/9/92): Distribution Restricted

Table 5.1.A summary of the list-related commands in Tcl.

concat list list ...
Concatenate multiple lists into a single list (each element of eachlist
becomes an element of the result list) and return the new list.

join list ?joinString ?
Concatenate list elements together withjoinString as separator and
return the result.

lappend varName value value ...
Append eachvalue to variablevarName as a list element, and return the
new value of the variable.

lindex list index
Returnindex ’th element fromlist .

linsert list index value value ...
Insertvalues as list elements beforeindex ’th element oflist .

list value value ...
Create and return a new list whose elements are thevalue arguments.

llength list
Return the number of elements inlist .

lrange list first last
Return a list consisting of elementsfirst throughlast of list .

lreplace list first last ?value value ...?
Return a new list formed by replacing elementsfirst throughlast of
list with zero or more new elements, each formed from onevalue argu-
ment.

lsearch list pattern
Return the index of the first element inlist that matchespattern (using
the rules forstring match), or -1 if none.

lsort list
Return a new list formed by sorting the elements oflist in alphabetical
order.

split string ?splitChars?
Return a list formed by splittingstring at instances ofsplitChars and
turning the characters between these instances into list elements.

36 Lists

DRAFT (10/9/92): Distribution Restricted

is a list with four elements. There can be any number of elements in a list, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).

The lindex command may be used to index into a list and extract a single element:

lindex {John Anne Mary Bob} 1

Anne

Lindex takes two arguments: a list and an index. It returns the element of the list selected
by the index. An index of0 corresponds to the first element of the list,1 corresponds to
the second element, and so on. If the index is outside the range of the list, then an empty
string is returned.

 When a list is entered in a Tcl command the list is usually enclosed in braces, as in
the above example. The braces are not part of the list; they are needed on the command
line so that the entire list is passed to the command as a single word even though it con-
tains spaces. When lists are stored in variables or printed out, there are no braces around
the list:

set x {John Anne Mary Bob}

John Anne Mary Bob

When the list commands are processing lists, they treat curly braces and backslashes
specially in the same way that the Tcl command parser treats these characters specially. If
the first character of a list element is an open curly brace then the element is not termi-
nated by spaces or tabs. Instead, it consists of all the characters up to the matching close
curly brace (but not including the braces themselves). For example:

lindex {a b {c d e} f} 2

c d e

One of the most common uses for braces is to create lists that contain other lists as ele-
ments, as in the above example. There is no limit on how deeply lists may be nested:

lindex [lindex {top {middle {bottom 1 2 3} next}} 1] 2

next

Backslashes may also be used within list elements to prevent special interpretation of
characters such as spaces and braces, or to insert special characters such as newline:

lindex {a \{x\ y c d} 1

{x y

The same backslash substitutions are available in lists as in commands (see Table 2.1). As
with commands, backslashes receive no special treatment when they occur in elements
enclosed in braces, except that backslashed braces are ignored in the search for the ele-
ment’s matching close brace:

lindex {a {b c \} d} e} 1

b c \} d

5.2 Creating lists: concat, list, and llength 37

DRAFT (10/9/92): Distribution Restricted

It’s important to remember that the special treatment of backslashes and braces in list
elements is carried out by the list commands themselves as they process lists. This special
treatment is independent of the substitutions made by the Tcl command parser when it is
preparing the command for execution. If a list is passed to a command without enclosing it
in braces, then the list will be processed twice: once by the Tcl command parser and again
by the list command. This potential for double-substitution in lists is similar to that in
expressions. As with expressions, it is usually a good idea to enclose lists in braces to pre-
vent substitutions by the Tcl command parser.

5.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to produce lists:concat and
list . Each of these commands accepts an arbitrary number of arguments, and each pro-
duces a list as a result. However, they differ in the way they combine their arguments. The
concat command takes one or more lists as arguments and joins all of the elements of
the argument lists together into a single large list:

concat {a b c} {d e} f {g h i}

a b c d e f g h i

Concat expects its arguments to have proper list structure; if the arguments are not well-
formed lists then the result may not be a well-formed list either. In fact, all thatconcat
does is to concatenate its argument strings into one large string with space characters
between the arguments. The same effect asconcat can be achieved using double-quotes
and command-line substitution:

set x {a b c}
set y {d e}
set z [concat $x $y]

a b c d e

set z "$x $y"

a b c d e

The list command works a little differently thanconcat : its arguments need not
be lists themselves, and it joins them together so that each argument becomes a distinct
element of the resulting list:

list {a b c} {d e} f {g h i}

{a b c} {d e} f {g h i}

In this case, the result list contains only four elements, three of which are themselves lists
with more than one element. Thelist command will always produce a list with proper
structure, regardless of the structure of its arguments, and thelindex command can
always be used to extract the original elements of a list created withlist . The arguments
to list need not themselves be well-formed lists:

38 Lists

DRAFT (10/9/92): Distribution Restricted

set x [list "{a" "Unmatched brace: {" "Short phrase."]

\{a Unmatched\ brace:\ \{ {A short phrase.}

lindex $x 0

{a

lindex $x 1

Unmatched brace: {

lindex $x 2

A short phrase.

Notice that the result of thelist command doesn’t always look exactly like the input
arguments. In the example abovelist added backslashes and braces in order to generate
a well-formed list from which the original elements could be extracted withlindex .

Properly-formed lists such as those produced bylist have another important prop-
erty. If such a list is executed as a Tcl command then the words of the command, after all
substitutions, will be exactly the arguments passed tolist . The first argument tolist
will be the command’s name, the next argument tolist will be the first argument for the
command, and so on. This property is very important because it allows you to generate
commands that are guaranteed to parse in a particular fashion, even if some of the com-
mand’s arguments contain characters like $ and [that normally cause substitutions to be
performed (thelist command quotes $ and [in list elements so that they won’t cause
substitutions if the list is executed as a Tcl command). You’ll hear more about this feature
of list in later chapters.

The llength command may be used to query the number of elements in a list:

llength {{a b c} {d e} f {g h i}}

4

llength a

1

llength {}

0

Llength takes a single argument, which must be a well-formed list, and returns a decimal
string. As you can see from the last example above, an empty string is considered to be a
proper list with zero elements.

5.3 Modifying lists: linsert, lreplace, lrange, and lappend

The linsert command forms a new list by adding one or more elements to an existing
list:

set x {a b {c d} e}

a b {c d} e

5.3 Modifying lists: linsert, lreplace, lrange, and lappend 39

DRAFT (10/9/92): Distribution Restricted

linsert $x 2 X Y Z

a b X Y Z {c d} e

linsert $x 0 {X Y} Z

{X Y} Z a b {c d} e

Linsert takes three or more arguments. The first is a list, the second is the index of an
element within that list, and the third and additional arguments are new elements to insert
into the list. The return value fromlinsert is a list formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-
ments go at the beginning of the list; if it is one then the new elements go after the first
element in the old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.

The lreplace command deletes one or more elements from a list and replaces
them with zero or more new elements:

set x {a b {c d} e}

a b {c d} e

lreplace $x 3 3

a b {c d}

lreplace $x 1 2 {W X} Y Z

a {W X} Y Z e

Lreplace takes three or more arguments. The first argument is a list and the second and
third arguments give the indices of the first and last elements to be deleted. If only three
arguments are specified, as in the firstlreplace command above, then the result is a
new list produced by deleting the given range of elements from the original list. If addi-
tional arguments are specified tolreplace as in the second example, then they are
inserted into the list in place of the elements that were deleted.

The lrange command is used to extract a range of elements from a list. It takes as
arguments a list and two indices and it returns a new list consisting of the range of ele-
ments that lie between the two indices:

set x {a b {c d} e}

a b {c d} e

lrange $x 1 3

b {c d} e

lrange $x 0 1

a b

The lappend command provides a particularly efficient way to append new ele-
ments to an existing list. Instead of taking a list as argument, it takes the name of a vari-
able whose value is a list. The variable’s value is modified by appending additional
arguments to it as new list elements. The return value from the command is the new value
of the variable:

40 Lists

DRAFT (10/9/92): Distribution Restricted

set x {a b {c d} e}

a b {c d} e

lappend x XX {YY ZZ}

a b {c d} e XX {YY ZZ}

set x

a b {c d} e XX {YY ZZ}

Lappend isn’t strictly necessary; for example, the same effect as thelappend
command above could be produced with the following command:

set x [linsert $x 100000 XX {YY ZZ}]

a b {c d} e XX {YY ZZ}

However, theset +linsert combination copies the entire list four times: from the vari-
able into thelinsert command, fromlinsert ’s argument to its result, fromlin-
sert ’s result toset ’s argument, and fromset ’s argument to the variable’s value. In
contrast,lappend does at most one copy (from the old variable value to a new larger
one) and in repeatedlappend operations it avoids even this copy by allocating extra
space for the variable when it grows it. For small lists the difference in peformance proba-
bly won’t be noticeable, but if you’re building a very large list a piece at a time thenlap-
pend is much more efficient thanset +linsert .

5.4 Searching lists: lsearch

The lsearch command may be used to search for a particular element within a list. It
takes two arguments, the first of which is a list and second of which is a pattern:

lsearch {ab ac bc} bc

2

lsearch {ab ac bc} ?c

1

lsearch {ab ac bc} cb

-1

Lsearch returns the index of the first element in the list that matches the pattern, or-1 if
there was no matching element. Matching is determined with the rules used by the
string match command described in Section 9.5. The firstlsearch command
above checks for an element that is exactlybc . The second command searches for an ele-
ment containing two characters withc as the second character, and the third command
searches for an element that is exactlycb .

5.5 Sorting lists: lsort 41

DRAFT (10/9/92): Distribution Restricted

5.5 Sorting lists: lsort

The lsort command takes a list as argument and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:

lsort {John Anne Mary Bob}

Anne Bob John Mary

5.6 Converting between strings and lists: split and join

Thesplit andjoin commands are useful for converting between lists and strings that
contain elements separated by characters other than spaces. For example, suppose a vari-
able contains a UNIX file name with elements separated by slashes, and you want to con-
vert it to a list with one element for each component of the file name. This would then
permit you to process the elements using commands described in this chapter, or other
commands likeforeach , which is described in Section 6.2. The conversion to a list can
be done with thesplit command:

set x a/b/c
set y /usr/include/sys/types.h
split $x /

a b c

split $y /

{} usr include sys types.h

Thesplit command takes two arguments. The first is the string to be split up and the
second is a string containing one or moresplit characters. The result is a list generated by
finding all the split characters in the string and creating one list element from the informa-
tion between each pair of split characters. The ends of the string are also treated as split
characters. If there are consecutive split characters or if the string starts or ends with a split
character (e.g. the second example above) then empty elements are generated in the result
list. The split characters themselves are discarded.

If an empty string is specified for the split characters in split, then each character of
the string is made into a separate list element:

split {a b c} {}

a { } b { } c

The join command is approximately the inverse of list, concatenating list elements
together with a given separator string between them:

join {a b c} /

a/b/c

join { {} usr include sys types.h} /

42 Lists

DRAFT (10/9/92): Distribution Restricted

/usr/include/sys/types.h

Join takes two arguments: a list and a separator string. It generates its result by extract-
ing all of the elements from the list and concatenating them together with the separator
string between each pair of elements. The separator string can contain any number of char-
acters, including zero:

join {a b c} .tmp/

a.tmp/b.tmp/c

join {a b c} {}

abc

In this respectjoin ’s behavior is not exactly the inverse ofsplit ’s, sincesplit treats
multiple split characters as independent separators.

One of the most common uses forsplit andjoin is for dealing with file names as
shown above. Another common use is for splitting up text into lines by using newline as
the split character:

set x [split {Now is the time
for all good men
to come to the aid
of their country} \n]

{Now is the time} {for all good men} {to come to the
aid} {of their country}

join $x \n

Now is the time
for all good men
to come to the aid
of their country

43

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 6
Control Structures

The Tcl language provides a number of facilities that you can use to generate, sequence,
and conditionally execute commands. These control structures mimic most of the control
structures found in the C programming language and thecsh shell, includingif , while ,
for , case , foreach , andeval . Table 6.1 summarizes the Tcl control structures.

Control structures in Tcl are just commands, and they have the same form as all other
Tcl commands. However, the commands that implement control structures, likeif and
while , are unusual in that one or more of their arguments are themselves Tcl scripts. The
control structure commands examine some of their arguments to determine what to do,
then execute other arguments one or more times by passing them to the Tcl interpreter.
The arguments executed in this way may themselves include additional control structures
or any other Tcl commands.

6.1 The if command

The if command in Tcl behaves likeif in C: it evaluates an expression, tests its result,
and conditionally executes a script based on the result. For example, consider the follow-
ing command:

if {$x < 0} {
set x 0

}

In this caseif receives two arguments. The first is an expression and the second is a Tcl
script, which spans three lines here. The expression can have any of the forms for expres-

FIGURE

TABLE 6

44 Control Structures

DRAFT (10/9/92): Distribution Restricted

Table 6.1.A summary of the Tcl commands that implement control structures.

break
Terminate innermost nested looping command (for , foreach , orwhile).

case string ?in ? patList body ?patList body ...?
case string ?in ? { patList body ?patList body ...?}

Matchstring against eachpatList in order until a match is found, then
execute thebody corresponding to the matchingpatList . A patList of
default matches anystring . Returns the result of thebody executed,
or an empty string if no pattern matches.

continue
Terminate the current iteration of the innermost looping command and go on
to the next iteration of that command.

eval arg ?arg arg ...?
Concatenate all of thearg ’s with spaces as separators, then execute the
result as a Tcl script and return its result.

for init test reinit body
Executeinit as a Tcl script. Then evaluatetest as an expression. If it
evaluates to non-zero then executebody as a Tcl script, executereinit as
a Tcl script, and re-evaluatetest as an expression. Repeat untiltest eval-
uates to zero. Returns an empty string.

foreach varName list body
List must be a valid Tcl list. For each element oflist , in order, set vari-
ablevarName to that value and executebody as a Tcl script. Returns an
empty string.

if test ?then ? trueBody ?else ? ?falseBody ?
Evaluatetest as an expression. If its value is non-zero then executetrue-
Body as a Tcl script. If its value is zero then executefalseBody as a Tcl
script (if falseBody is specified). Returns the result oftrueBody or
falseBody , or an empty string iftest evaluates to zero and there is no
falseBody .

source fileName
Read the file whose name isfileName and execute its contents as a Tcl
script. Returns the result of the script.

while test body
Evaluatetest as an expression. If its value is non-zero then executebody
as a Tcl script and re-evaluatetest . Repeat untiltest evaluates to zero.
Returns an empty string.

6.1 The if command 45

DRAFT (10/9/92): Distribution Restricted

sions described in Chapter 4. Theif command tests the value of the expression; if the
value is non-zero, thenif executes the Tcl script. If the value is zero thenif returns
without taking any further action. The example above sets the variablex to zero if it was
previously negative.

If commands can also receive an additional argument containing a Tcl script to exe-
cute if the expression evaluates to zero (an “else clause”). In addition,if allows the noise
wordsthen andelse to precede the corresponding script arguments. The following
commands are all identical in effect:

if {$x < 0} then {set x 0} else {set x [expr $x+2]}

if {$x < 0} {
set x 0

} else {
set x [expr $x+2]

}

if {$x < 0} {set x 0} {set x [expr $x+2]}

The result of anif command is the result of the “then” or “else” clause, whichever is
executed. If neither a “then” clause nor an “else” clause is executed (because the com-
mand contained no “else” clause and the expression evaluated to 0), then the command
returns an empty string:

set x -2

-2

if {$x < 0} {set x 0}

0

In the examples in this book the expression and script arguments toif are almost always
enclosed in braces. This is usually a good idea in commands that implement control struc-
tures, and in some cases it is absolutely necessary. The reason for this is the same as the
reason given in Chapter 4 for expressions: double substitution will occur if the arguments
aren’t enclosed in braces. For the expression argument, substitutions will be performed
when the argument is evaluated as an expression, so there is generally no need to have an
earlier round of substutions while parsing theif command. For the script arguments, sub-
stitutions will be performed when the arguments are executed as Tcl commands, so there
is generally no need to have an earlier round of substitutions while parsing theif com-
mand. If the braces are omitted, then the double substitution an undesirable effect. For
example, consider the following script:

set b "A test string"

A test string

if {$a == ""} "set a $b"

wrong # args: should be "set varName ?newValue?"

46 Control Structures

DRAFT (10/9/92): Distribution Restricted

The second argument toif wasn’t enclosed in braces, so the value of variableb was sub-
stituted as part of invoking theif command. Thus the second argument toif was

set a A test string

When this string was subsequently executed as a Tcl scriptset returned an error because
it received four arguments when it was expecting only one or two. If theset command
had been enclosed in braces instead of quotes, thenb’s value wouldn’t have been substi-
tuted until theset command was executed and the entire value of$b would have formed
a single argument toset .

6.2 Looping commands: while, for, and foreach

Tcl provides three commands for looping:while , for , andforeach . While andfor
are similar to the corresponding C constructs, andforeach is similar to the correspond-
ing feature in thecsh shell. Each of these commands executes a nested script over and
over again; they differ in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhile command takes two arguments: an expression and a Tcl script. It evalu-
ates the expression and if the result is non-zero then it executes the Tcl script. This process
repeats over and over until the expression evaluates to zero, at which point thewhile
command terminates and returns an empty string. For example, the script below copies the
elements from the list stored in variablea to variableb in reverse order:

set b ""
set i [llength $a]
while {$i > 0} {

incr i -1
lappend b [lindex $a $i]

}

Thefor command is similar towhile except that it also takes two additional script
arguments, which perform once-only initialization before the first iteration of the loop and
reinitialization after each execution of the loop body. The above program to reverse the
elements of a list can be rewritten usingfor as follows:

set b "";
for {set i [expr {[llength $a]-1}]} {$i >= 0} \

{incr i -1} {
lappend b [lindex $a $i]

}

The first argument tofor is the initialization script, the second is an expression that deter-
mines when to terminate the loop, the third (which is on the second line of the command)
is the reinitialization script, and the fourth argument is a script that forms the body of the
loop.For executes its first argument (the initialization script) as a Tcl command, then

6.3 Loop control: break and continue 47

DRAFT (10/9/92): Distribution Restricted

evaluates the expression. If the expression evaluates to non-zero, thenfor executes the
body followed by the reinitialization script and reevaluates the expression. It repeats this
sequence over and over again until the expression evaluates to zero. If the expression eval-
uates to zero on the first test then neither the body script or the reinitialization script is ever
executed. Likewhile , for returns an empty string as result.

For andwhile are equivalent in that anything you can write using one command
you can also write using the other command. However,for has the advantage of placing
all of the loop control information in one place where it is easy to see. Typically the initial-
ization, test, and re-initialization arguments are used to select a set of elements to be oper-
ated upon (integer indices in the above example) and the body of the loop carries out the
operations on the chosen elements. This clean separation between element selection and
action makes loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
while loop may make more sense.

Theforeach iterates over all of the elements of a list. For example, the following
script provides yet another implemenation of list reversal:

set b "";
foreach i $a {

set b [linsert $b 0 $i]
}

Foreach takes three arguments. The first is the name of a variable, the second is a list,
and the third is a Tcl script that forms the body of the loop.Foreach will execute the
body script once for each element of the list, in order. Before executing the body in each
iteration,foreach sets the named variable to hold the corresponding element of the list.
Thus if variablea has the value “first second third ” in the above example, the
body will be executed three times. In the first iterationi will have the valuefirst , in the
second iteration it will have the valuesecond , and in the third iteration it will have the
valuethird . At the end of the loop, b will have the value “third second first ”.
As with the other looping commands,foreach always returns an empty string.

6.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:
break andcontinue . These commands have the same behavior as the corresponding
constructs in C. Neither takes any arguments. Thebreak command causes the innermost
enclosing looping command to terminate immediately. For example, suppose that in the
list reversal example above it is desired to stop as soon as an element equal toZZZ is
found in the source list. In other words, the result list should consist of a reversal of only
those source elements up to (but not including) aZZZ element. This can be accomplished
with break as follows:

48 Control Structures

DRAFT (10/9/92): Distribution Restricted

set b "";
foreach i $a {

if {$i == "ZZZ"} break
set b [linsert $b 0 $i]

}

Thecontinue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the case ofwhile , this means
skipping out of the body and re-evaluating the expression that determines when the loop
terminates; infor loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, whereZZZ elements are simply skipped without copying them to the
result list:

set b "";
foreach i $a {

if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

}

In this example thecontinue isn’t absolutely necessary since the same effect could be
achieved by enclosing the “set b ... ” command in anif command.Continue
commands are most often used to eliminate a deeply nested set ofif commands that
would result ifcontinue weren’t used. Typically this occurs when the main loop iter-
ates over a superset of the desired elements and a complex set of tests must be performed
on the individual elements to determine whether they should be acted upon. Each of these
tests can be coded as anif command that invokescontinue if the test determines that
the element is inappropriate.

6.4 The case command

Thecase command tests a value against a number of patterns and executes one of several
Tcl scripts depending on which pattern matched. The same effect ascase can be
achieved with a nested set ofif commands, butcase provides a more compact encod-
ing. Tcl’scase command has two forms; here is an example of the first form:

case $x in a {incr t1} b {incr t2} c {incr t3}

The first argument tocase is the value to be tested (the contents of variablex in the com-
mand above). The second argument is the “noise word”in ; this argument can be omitted.
After that come one or more pairs of arguments; the first argument in each pair is a pattern
to compare against the value, and the second is a script to execute if the pattern matches.
The case command steps through these pairs in order, comparing the pattern against the
value. As soon as it finds a match it executes the corresponding script and returns the value
of that script as its value. If no pattern matches then no script is executed andcase

6.4 The case command 49

DRAFT (10/9/92): Distribution Restricted

returns an empty string. This particular command increments variablet1 if x has the
value a,t2 if x has the valueb, t3 if x has the valuec , and does nothing otherwise.

The second form forcase is similar to the first except that all of the pattern-script
pairs are combined into a single list argument instead of being separate arguments. In the
second form the above command looks like this:

case $x in {a {incr t1} b {incr t2} c {incr t3}}

This form is convenient because it allows the patterns and scripts to be spread across mul-
tiple lines: the braces around the list prevent the newlines from being treated as command
separators. If the first form spills over onto multiple lines then backslashes have to be
placed at the ends of lines to quote the newlines. In addition, variable and command sub-
stitutions never occur in the patterns of the second form because of the braces around the
list of patterns and scripts. In the first form, variable and command substitutions will be
performed unless the individual patterns are enclosed in braces. Most people seem to find
the second form easier to use in most cases.

Thecase command has three other features that aren’t used in the above examples.
First, each pattern is actually a list of patterns (in the above examples the pattern lists only
had a single element each). It is sufficient for any element of the list to match the value.
For example, the command below incrementst1 if x is a or b, t2 if x is c or d or e, and
does nothing otherwise:

case $x in {{a b} {incr t1} {c d e} {incr t2}}

The second additional feature is that patterns may contain a variety of wild-card
matching characters. For example, a? in a pattern matches any single character of the
value and a* matches any substring (zero or more characters). The special characters fol-
low the style of thecsh shell and include?, * , [] , and\ . See the description of the
string match command in Section 9.5 for full details. As an example of the use of
wild-cards, the following command incrementst1 if x contains the lettera and it incre-
mentst2 if x contains ab or ac but noa:

case $x in {*a* {incr t1} {*b* *c*} {incr t2}}

The final feature ofcase is that a pattern ofdefault matches any value. It is
equivalent to a pattern of * and is typically the last pattern in thecase command. Its
script will thus be executed if no other patterns match. For example, the script below will
examine a list and produce three counters. The first,t1 , counts the number of elements in
the list that contain ana. The second,t2 , counts the number of elements that have ab or
c but noa. The third,t3 , counts the number of elements that have neither ana, ab, nor a
c :

set t1 0
set t2 0
set t3 0
foreach i $x {

case $x in {
a {incr t1}

50 Control Structures

DRAFT (10/9/92): Distribution Restricted

{*b* *c*} {incr t2}
default {incr t3}

}
}

6.5 Generating commands on the fly: eval

Eval is a command that makes it easy to synthesize scripts on-the-fly, save them around
in variables, and eventually execute them. It takes one or more arguments. If it receives
only one argument then it simply executes that argument as a Tcl script. Ifeval is given
two or more arguments then it concatenates them together with spaces between them and
executes the result as a Tcl script. The command

eval a b c d

is exactly equivalent to the command

if 1 [concat a b c d]

for any values ofa, b, c , andd.
One possible use foreval is in a macro facility where a user’s actions are recorded

for later replay. This can be implemented by appending the Tcl command for each user
action to a variable before executing it. Then the sequence of commands can be replayed
by eval -ing the variable.

It’s important to realize that two rounds of parsing occur in the arguments toeval .
They are parsed (and substituted) once when theeval command is parsed, and again
when they are executed as a script. It’s easy to run into troubles witheval if you aren’t
aware of the two levels of parsing. For example, suppose that the variablesa, b, andc
contain the name of a command and two arguments for it, and you want to execute the
command defined by the variables. An obvious but incorrect way to do it is like this:

eval $a $b $c

The problem with this is that the variables are concatenated to form the script and the
script is re-parsed when it is executed. There is no guarantee that the script will be parsed
so that each of the variables ends up as a single word of the resulting command. For exam-
ple, supposea has the valueset , b has the valuex andc has the value “A test
string ”. Theeval command will concatenate these variables to produce the string
“set x A test string ”, then it will execute this string. Unfortunately, this string
will be parsed into a command with five words, not three. Theset command will receive
four arguments and it will generate an error because of this.

There are two ways to solve this problem. One approach that works in this particular
instance (but not in more complex situations) is to enclose all of the variables in braces:

eval {$a $b $c}

6.6 Executing from files: source 51

DRAFT (10/9/92): Distribution Restricted

The braces prevent variable substitution from occuring when the eval command is parsed,
so the command that eval executes is “$a $b $c ”. The variables get substituted when
this command is executed, and each variable becomes one word of the command as
desired.

A more general approach to this problem is to take advantage of the fact that Tcl com-
mands have list structure. If a proper Tcl list is executed as a command then each element
of the list will become one word of the resulting command. You can use the list commands
to generate a list with a particular structure and be absolutely certain that the list will parse
in a particular way when executed as a command. For example, the above problem can be
eliminated with the following command:

eval [list $a $b $c]

In this caseeval will receive a single argument, “set x {A test string} ”, which
it will then execute. This command will be parsed into three words and achieve the desired
effect. It is guaranteed to work regardless of the values of the three variables. Using lists is
more general than the braces approach because you can generate lists with arbitrary struc-
ture. For example, suppose that you have the same three variables butc is now a list itself
and you want each ofc ’s elements to form a distinct argument to the generated command.
A andb are each to form one word as before. You can handle this situation with the fol-
lowing command:

eval [concat [list $a $b] $c]

or, equivalently,

eval [list $a $b] $c

In each of these cases the generated command will be a list whose first two elements area
andb and whose remaining elements are the elements ofc .

6.6 Executing from files: source

Thesource command is similar to the command by the same name in thecsh shell: it
reads a file and executes the contents of the file as a Tcl script. It takes a single argument
that contains the name of the file. For example, the command

source test.tcl

will execute the contents of the filetest.tcl . The return value fromsource will be
the value returned when the file contents are executed, which will normally be the return
value from the last command in the file. In addition,source allows thereturn com-
mand to be used in the file’s script to terminate the processing of the file. See Section 7.1
for more information onreturn .

52 Control Structures

DRAFT (10/9/92): Distribution Restricted

53

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 7
Procedures

A procedure in Tcl is a command that looks and behaves like the built-in commands, but is
implemented with a Tcl script rather than C code. You can define new procedures at any
time with theproc command described in this chapter. Procedures make it easy for you
to extend the functions of a Tcl-based application and to package up the extensions in a
clean and easy-to-use fashion. Procedures also provide a simple way for you to prototype
new features in an application: once you’ve tested the procedures, you can reimplement
them as built-in commands written in C for higher performance; the C implementations
will appear just like the original procedures so none of the scripts that invoke them will
have to change.

The procedure mechanism also provides some unusual and sophisticated commands
for dealing with variable scopes. Among other things, these commands allow you to
implement new Tcl control structures as procedures. Table 7.1 summarizes the Tcl com-
mands related to procedures.

7.1 Procedure basics: proc and return

Procedures are created with theproc command, as in the following example:

proc plus {a b} {expr $a+$b}

The first argument toproc is the name of the procedure to be created,plus in this case.
The second argument is a list of names of arguments to the procedure (two arguments,a
andb, here). The third argument toproc is a Tcl script that forms the body of the new
procedure. Proc creates a new command for the procedure’s name. It also arranges that

FIGURE

TABLE 7

54 Procedures

DRAFT (10/9/92): Distribution Restricted

whenever the command is invoked the procedure’s body will be executed. In this case the
new command will have the nameplus ; wheneverplus is invoked it must receive two
arguments. While the body ofplus is executing the variablesa andb will contain the
values of the arguments. The return value from theplus command is the value returned
by the last command inplus ’s body. Here are some correct and incorrect invocations of
plus :

plus 3 4

7

Table 7.1.A summary of the Tcl commands related to procedures and variable scoping.

global name1 ?name2 ...?
Bind variable namesname1, name2, etc. to global variables. References to
variables with these names will refer to global variables instead of local vari-
ables for the duration of the current procedure. Returns an empty string.

proc name argList body
Define a procedure whose name isname, replacing any existing command
by that name.ArgList is a list with one element for each of the procedure’s
arguments, andbody contains a Tcl script that is the procedure’s body.
Returns an empty string.

rename oldName newName
Rename the command that used to be calledoldName so that it is now
callednewName. There must not currently be a command namednewName.
If newName is an empty string thenoldName is deleted. Returns an empty
string.

return ?value ?
Return from the innermost nested procedure withvalue as the result of the
procedure.Value defaults to an empty string.

uplevel ?level ? arg ?arg arg ...?
Concatenate all of thearg ’s with spaces as separators, then execute the
resulting Tcl script in the variable context of stack levellevel . Level
consists of a number optionally preceded by#, and defaults to#0 . Returns
the result of the script.

upvar ?level ? otherVar 1 myVar1 ?otherVar 2 myVar2 ...?
Bind the local variable namemyVar1 to the variable at stack levellevel
whose name isotherVar1 . For the duration of the current procedure, vari-
able references tomyVar1 will be directed tootherVar1 at level
instead. Additional bindings may be specified withotherVar2 and
myVar2 , etc.Level has the same syntax and meaning as foruplevel .
Returns an empty string.

7.2 Local and global variables 55

DRAFT (10/9/92): Distribution Restricted

plus 3 -1

2

plus 1

no value given for parameter "b" to "plus"

Thereturn command may be used to force an immediate return from a procedure.
When it is invoked inside a procedure, the procedure returns immediately and the argu-
ment toreturn becomes the return value from the procedure. The following script
defines a procedureless that returns1 if its first argument is less than its second and0
otherwise:

proc less {a b} {
if {$a < $b} {

return 1
}
return 0

}

If return is invoked with no arguments then the enclosing procedure returns with a
result that is an empty string. Thereturn command may also be used in a script file to
terminate asource command. Any other use ofreturn (e.g. when there is no active
procedure and no activesource command) generates an error.

7.2 Local and global variables

When the body of a Tcl procedure is executed, it behaves exactly the same as if it were
invoked outside of the procedure (witheval , for example) except for one thing: it has a
different variable context. Each procedure invocation has its own private set of variables,
calledlocal variables, and these variables are different from theglobal variables that are
accessible outside any procedure. When a variable name is used inside a procedure, it
refers by default to a local variable. Local variables are created the first time they are set,
and they are all deleted when the procedure returns. If one procedure calls another, the
callee’s local variables are disjoint from the caller’s local variables.

The arguments to a procedure are just local variables whose values are set from the
command-line arguments at the time the procedure is invoked. When execution begins in
a procedure, the only local variables with values are those corresponding to arguments.

A procedure can reference global variables by invoking theglobal command. For
example, the following command makes the global variablesx andy accessible inside a
procedure:

global x y

Theglobal command treats each of its arguments as the name of a global variable, and
sets up bindings so that references to those names within the procedure will be directed to
global variables instead of local ones.Global can be invoked at any time during a proce-

56 Procedures

DRAFT (10/9/92): Distribution Restricted

dure; once it has been invoked, the bindings will remain in effect until the procedure
returns.

If you’re used to programming in a language with declarations like C, it’s important
to realize thatglobal is not a declaration; it’s a command. This means that the global
binding doesn’t take effect until the command is actually executed. Also, the precedence
of local and global variables is different in Tcl from what it is in most other programming
languages. If a procedure first accesses a variable as a local variable and then invokes
global , the global variable takes precedence over the local one and the local variable
will not be accessible for the rest of the procedure. The script below is probably not very
useful but it demonstrates this behavior:

proc add1 a {
global a
expr $a+1

}
set a 44
add1 33

45

add1 21

45

If unset is invoked within a procedure on a global variable, it unsets the global vari-
able but does not remove the binding for that name within the procedure. The global vari-
able continues to be accessible for the rest of the procedure, and it can be re-set by the
procedure if desired.

7.3 More on arguments: defaults and variable numbers of
arguments

In the examples so far, the second argument toproc (which describes the arguments to
the procedure) has taken a simple form consisting of the names of the arguments. Three
additional features are available for specifying arguments. First, the argument list may be
specified as an empty string. In this case the procedure takes no arguments. For example,
the following command defines a procedure that prints out two global variables:

proc printVars {} {
global a b
puts stdout "a is $a, b is $b"

}

The second additional feature for argument lists is that defaults may be specified for
some or all of the arguments. The argument list is actually a list of lists, with each sublist
corresponding to a single argument. If a sublist has only a single element (which has been
the case up until now) that element is the name of the argument. If a sublist has two argu-

7.3 More on arguments: defaults and variable numbers of arguments 57

DRAFT (10/9/92): Distribution Restricted

ments, the first is the argument’s name and the second is a default value for it. For exam-
ple, here is a procedure that increments a given value by a given amount, with the amount
defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment

}

The first element in the argument list,value , specifies a name with no default value. The
second element specifies an argument with nameincrement and a default value of1.
This means thatinc can be invoked with either one or two arguments:

inc 42 3

45

inc 42

43

If a default wasn’t specified for an argument in theproc command, then that argument
must be supplied whenever the procedure is invoked. The defaulted arguments, if any,
must be the last arguments for the procedure: if a particular argument is defaulted then all
the arguments after that one must also be defaulted.

The third special feature in argument lists is support for variable numbers of argu-
ments. If the last argument in the argument list isargs , then the procedure may be called
with varying numbers of arguments. Arguments beforeargs in the argument list are han-
dled as before, but any number of additional arguments may be specified. The procedure’s
local variableargs will be set to a list whose elements are all of the extra arguments. If
there are no extra arguments thenargs will be set to an empty string. For example, the
following procedure may be invoked with any number of arguments and it returns their
sum:

proc sum args {
set s 0
foreach i $args {

incr s $i
}
return $s

}
sum 1 2 3 4 5

15

sum

0

If a procedure’s argument list contains additional arguments beforeargs then they may
be defaulted as described above. Of course, if this happens there will be no extra argu-
ments soargs will be set to an empty string. No default value may be specified for
args : the empty string is always its default.

58 Procedures

DRAFT (10/9/92): Distribution Restricted

7.4 Exotic scoping facilities: upvar and uplevel

By default, all of the variables used by a procedure are local to that procedure. With the
global command a procedure can access global variables. This section describes two
additional commands,upvar anduplevel , that allow a procedure to access the vari-
able context of any procedure that is currently active as well as global variables. These
commands are useful for implementing call-by-reference argument semantics, and they
can also be used to define new control structures as Tcl procedures.

Theupvar command binds one or more names in the local variable context to other
variables at global level or in the context of some other active procedure.Upvar has the
form

upvar ? level ? otherVar1 myVar1 ? otherVar2 myVar2 ...?

The level argument selects a variable context. If it is1, it selects the context of the pro-
cedure that invoked the current one (or global context if the command that invoked this
procedure was at global level). Iflevel is 2 it selects the context of the caller’s caller,
and so on. Alternatively, level may be specified as#0 to specify global level,#1 to spec-
ify the context of the first-level procedure invoked from global level, and so on.Level
may be omitted (unless the first character ofotherVar1 is # or a digit), in which case it
defaults to 1.

TheotherVar1 argument toupvar specifies the name of a variable in the context
selected bylevel . Theupvar command will make this variable accessible by the name
myVar1 in the current procedure. If additional arguments are specified, they give the
names of other variables in the context selected bylevel , along with the names by
which those variables will be accessible in the current procedure. The effect of anupvar
command lasts until the procedure returns, and the general behavior ofupvar is the same
asglobal except that a wider range of variables may be acessed throughupvar .

One of the most common uses ofupvar is to implement call-by-reference argument
semantics, where a procedure receives as one its arguments the name of a variable in the
caller’s context. It can then useupvar to read or modify the variable. For example, con-
sider the following procedure:

proc squares {varName n} {
upvar 1 $varName v
set v {}
for {set i 1} {$i <= $n} {incr i} {

lappend v [expr $i*$i]
}

}

Thesquares procedure takes two arguments: the name of a variable in the caller’s con-
text and a numbern. It sets the variable to a list whose elements are the squares of the first
n integers:

7.4 Exotic scoping facilities: upvar and uplevel 59

DRAFT (10/9/92): Distribution Restricted

squares x 5
set x

1 4 9 16 25

Thesquares procedure will work equally well whether its caller is a command at global
level or another procedure; whatever variable was accessible to the caller by the given
name will be modified. TheotherVar variable in anupvar command may itself be the
myVar name of anupvar command; in this case a chain of variable names can arise with
all of them referring to the same original variable.

Theuplevel command may be used to execute a script in another variable context.
It is a cross betweenupvar andeval , and it has the following form:

uplevel ? level ? arg ? arg arg ...?

Level has the same forms as forupvar . Uplevel concatenates all of itsarg argu-
ments (with spaces separating them) and executes the resulting string as a Tcl script just as
eval does. However, the execution is carried out in the variable context given bylevel
rather than the current context as foreval . The result of the nested script will be returned
by uplevel as its result.

Uplevel andupvar can be used to create new control structures as Tcl procedures.
For example, if there were nofor command in Tcl, it could be defined with the following
procedure:

proc for {init test reinit body} {
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

uplevel 1 $body
uplevel 1 $reinit

}
}

Actually, this code isn’t a perfect emulation of the built-infor command because it
doesn’t handlebreak , continue , and errors in the same way as the built-in command,
but it could easily be extended to do so using the facilities described in Chapter 8. The
uplevel command is essential to this script; without ittest , init , reinit , and
body would not be able to access variables in the calling procedure’s variable context.
The use of thelist command in this example is also essential for the procedure to work
with arbitrarytest arguments; the reasons for this are the same as those discussed in
Section 6.5 for theeval command.

Thedo procedure below is another example that usesupvar anduplevel to create
a new control structure:

proc do {varName first last body} {
upvar 1 $varName v
for {set v $first} {$v <= $last} {incr v} {

uplevel 1 $body

60 Procedures

DRAFT (10/9/92): Distribution Restricted

}
}

The first argument todo is the name of a variable.Do sets that variable to each number in
the range between its second and third arguments, inclusive, and executes the fourth argu-
ment as a Tcl command once for each setting. Given this definition ofdo , the following
script creates a list of squares of the first five integers:

set a {}
do i 1 5 {

lappend a [expr $i*$i]
}
set a

1 4 9 16 25

7.5 Replacing, renaming, and deleting commands

If you invokeproc at a time when there is already a command with the name specified in
the command, then the existing command is replaced with the new procedure. This is true
regardless of whether the existing command is a built-in command or a procedure. This
means, for example, that you can redefine procedures at any time in the life of a Tcl-based
application. It also means that you can redefine built-in commands likeif (or even
proc !) if you wish (this can occasionally be useful, but it may also cause your scripts to
misbehave in confusing ways).

If you wish to redefine or re-arrange the command structure of an application, you
may find therename command useful. It takes two arguments:

rename oldName newName

Rename does just what its name implies: it renames the command that used to have the
nameoldName so that it now has the namenewName. NewName must not already exist
as a command whenrename is invoked.

Rename can also be used to delete a command by invoking it with an empty string as
thenewName argument. For example, the following script disables all file I/O from an
application by deleting the relevant commands:

rename open {}
rename read {}
rename gets {}
rename puts {}

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably a bad idea in general, since it will break scripts that depend on the
command, but in some situations it can be very useful. For example, theexit command
as defined by Tcl just exits the process immediately (see Section 11.4). If an application

7.5 Replacing, renaming, and deleting commands 61

DRAFT (10/9/92): Distribution Restricted

wants to have a chance to clean up its internal state before exiting, then it can create a
“wrapper” aroundexit by redefining it:

rename exit exit.old
proc exit status {

application-specific cleanup
...
exit.old $status

}

In this example theexit command is renamed toexit.old and a newexit proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scripts that callexit to be
used without change while still giving the application an opportunity to clean up its state.

62 Procedures

DRAFT (10/9/92): Distribution Restricted

63

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 8
Errors and Exceptions

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command doesn’t receive the right number of
arguments, or because the arguments have the wrong form (e.g. a string with improper list
structure passed to a list command), or because some other problem occurs in executing
the command, such as an error in a system call for file I/O. In most cases errors represent
severe problems that make it impossible for the application to complete the script it is pro-
cessing. Tcl’s error facilities are intended to make it easy for the application to “unwind”
the work in progress and display an error message to the user that indicates what went
wrong. Presumably the user will fix the problem and retry the operation.

Tcl also allows errors to be “caught” by scripts so that only part of the work in
progress in unwound. After catching an error, the script can either ignore the error or take
steps to recover from it. If it can’t recover then the script can then reissue the error. The
error-handling facilities in Tcl also apply to a collection ofexceptions including the
break , continue , andreturn commands.The facilities for catching and reissuing
errors are not needed very often in Tcl scripts, but when they are needed they can be used
to achieve powerful effects. This chapter is organized with the most basic error facilities
first and the more esoteric features at the end. Table 8.1 summarizes the Tcl commands
related to errors.

8.1 What happens after an error?

When a Tcl error occurs, the command being processed is aborted. If that command is part
of a larger script then the script is also aborted. If the error occurs while executing a Tcl

FIGURE

TABLE 8

64 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

procedure, then the procedure is aborted, along with the procedure that called it, and so on
until all the active procedures have aborted. After all Tcl activity has been unwound in this
way, control eventually returns to C code in the application, along with an indication that
an error occurred and a human-readable error message. It is up to the application to decide
how to handle this situation, but a typical response for an interactive application is to dis-
play the error message for the user and continue processing user input. In a batch-oriented
application where the user can’t see the error message and adjust future commands
accordingly, the application might print the error message into a log and abort.

As an example, consider the following script, which is intended to sum the elements
of a list:

set list {44 16 123 98 57}
set sum 0
foreach el $list {

set sum [expr {$sum+$element}]
}

This script is incorrect because there is no variableelement : the variable nameele-
ment in theexpr command should have beenel to match the loop variable specified for
theforeach command. If the script is executed in its current form an error will occur in
theexpr command: as it is processing its expression argument, it will attempt to substi-
tute the value of variableelement ; it will not be able to find a variable by that name, so
it will signal an error. This error indication will be returned to theforeach command,
which had invoked the Tcl interpreter to execute the loop body. Whenforeach sees that
an error has occurred, it will abort its loop and return the same error indication as its own
result. This in turn will cause the overall script to be aborted. The error message “can’t
read "element": no such variable ” will be passed along with the error, and
will probably be displayed for the user.

Table 8.1.A summary of the Tcl commands related to errors.

catch command ?varName?
Executecommand as a Tcl script and return an integer code that identifies
the completion status of the command. IfvarName is specified, it gives the
name of a variable; the variable will be modified to hold the return value or
error message generated bycommand.

error message ?info ? ?code ?
Generate an error withmessage as the error message. Ifinfo is specified
and is not an empty string then it is used to initialize theerrorInfo vari-
able. Ifcode is specified then it is stored in theerrorCode variable.

8.1 What happens after an error? 65

DRAFT (10/9/92): Distribution Restricted

When an error occurs, three pieces of information about the error are available after-
wards. The first piece of information is the error message. In simple cases this will provide
enough information for you to pinpoint where and why the error occurred so you can
avoid the problem in the future.

The second piece of information about errors is the global variableerrorInfo ,
which is set by Tcl after each error. If a complex script was being executed when the error
occurred, the message alone may not provide enough information for you to figure out
where the error occurred. This is particularly true if nested procedure calls were active at
the time of the error. To help you pinpoint the context of the error, Tcl stores information
in theerrorInfo variable as it unwinds the commands that were in progress. This infor-
mation describes each of the nested calls to the Tcl interpreter. For example, after the
above errorerrorInfo will have the following value:

can’t read "element": no such variable
while executing

"expr {$sum+$element}"
invoked from within

"set sum [expr {$sum+$element}]..."
("foreach" body line 2)
invoked from within

"foreach el $list {
set sum [expr {$sum+$element}]

}"

The third piece of information that is available after errors is the global variable
errorCode . ErrorCode provides information in a form that is easy to process with
Tcl scripts; it is most commonly used after catching errors as described below. The
errorCode variable consists of a list with one or more elements. The first element iden-
tifies a general class of errors and the remaining elements provide more information in a
class-dependent fashion. For example, if the first element oferrorCode is UNIX then it
means that an error occurred in a UNIX system call.ErrorCode will contain two addi-
tional elements giving the UNIX name for the error, such asENOENT, and a human-read-
able message describing the error. See the reference documentation for a complete
description of all the formserrorCode can take, or refer to the descriptions of individ-
ual commands that seterrorCode , such as those in Chapter 10 and Chapter 11.

TheerrorCode variable is a relative late-comer to Tcl and is only filled in with use-
ful information by a few commands, mostly dealing with file access and child processes.
When an error occurs without any useful information available forerrorCode , Tcl fills
it in with the valueNONE.

66 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

8.2 Generating errors from Tcl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the
built-in commands. However, it is also possible to generate an error by executing the
error Tcl command as in the following example:

if {($x < 0} || ($x > 100)} {
error "x is out of range ($x)"

}

In this caseerror takes a single argument, which is the error message. Theerror com-
mand simply generates an error and uses its argument as the error message.Error can
also have one or two additional arguments, which are used when reissuing errors (see Sec-
tion 8.5 below).

As a matter of programming style, you should only use theerror command in situ-
ations where the correct action is usually to abort the script being executed. If you think
that an error is likely to be recovered from by the script in which it occurred without abort-
ing the entire script, then it is probably better to use the normal return value mechanism to
indicate success or failure (e.g. return one value from a command if it succeeded and
another if it failed, or set variables to indicate success or failure). Although it is possible to
recover from errors (you’ll see how in Section 8.3 below) the recovery mechanism is more
complicated than the normal return value mechanism. Thus it’s best to generate errors
only in situations where you won’t usually want to recover.

8.3 Trapping errors with catch

Errors generally cause all active Tcl commands to be aborted, but there are some situations
where it is useful to continue processing Tcl commands after an error has occurred. For
example, suppose that you want to unset variablex if it exists, but it may not exist at the
time of theunset command. If you invokeunset on a variable that doesn’t exist then it
generates an error:

unset x

can’t unset "x": no such variable

You can use thecatch command to ignore the error in this situation:

catch {unset x}

1

The argument tocatch is a Tcl script, whichcatch executes. If the script completes
normally thencatch returns 0. If an error occurs in the script, thecatch command traps
the error (so that thecatch command itself is not aborted by the error) and it returns 1 to
indicate that an error occurred. In the above example thecatch command ignores any

8.4 Exceptions in general 67

DRAFT (10/9/92): Distribution Restricted

errors inunset ; thusx is unset if it existed and the script has no effect ifx didn’t previ-
ously exist.

Thecatch command can also take a second argument. If the argument is provided
then it is the name of a variable andcatch modifies the variable to hold either the script’s
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg

1

set msg

can’t unset "x": no such variable

In this case theunset command generates an error somsg is set to contain the error mes-
sage. If variable x had existed thenunset would have returned succesfully, so the return
value fromcatch would have been0 andmsg would have contained the return value
from theunset command, which is an empty string. This longer form ofcatch is use-
ful if you need access to the return value when the script completes succesfully. It’s also
useful if you need to do something with the error message after an error, such as logging it
to a file.

8.4 Exceptions in general

Errors are not the only things in Tcl that cause work in progress to be aborted. Errors are
just one example of a set of events calledexceptions . In addition to errors there are
three other kinds of exceptions in Tcl, which are generated by thebreak , continue ,
andreturn commands. These exceptions cause active scripts to be aborted just like
errors, except for two differences. First, theerrorInfo anderrorCode variables are
only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For example,break andcontinue commands are normally invoked inside a
looping command such asforeach ; foreach will catchbreak andcontinue
exceptions and implement the expected behavior by terminating the loop or going on to
the next iteration. Similarly,return is normally only invoked inside a procedure or a file
beingsource ’d. Both the procedure implementation and thesource command catch
return exceptions.

If break or continue is invoked at a time when none of the enclosing commands
is prepared to catch the exception then unwinding occurs just as for errors. After all of the
active commands have been aborted the Tcl interpreter turns the exception into an error:

set x 22
if {$x < 30} {

break
}

invoked "break" outside of a loop

68 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

Break andcontinue exceptions are also caught and turned into errors if they
occur inside a procedure and are not caught within that procedure. Ifreturn is invoked
at a point outside a procedure orsource ’d file then all the active commands are aborted
and the Tcl interpreter turns the exception into a normal return:

set x 22
if {$x < 30} {

return "all done"
}

all done

All exceptions are accompanied by a string value. In the case of an error, the string is
the error message. In the case ofreturn , the string is the return value for the procedure
or script. In the case ofbreak andcontinue the string is always empty.

Thecatch command actually catches all exceptions, not just errors. The return
value fromcatch indicates which kind of exception occurred and the variable specified
in catch ’s second argument is set to hold the string associated with the exception (see
Table 8.2). For example:

catch {return "all done"} string

2

set string

all done

As an example of howcatch might be used to deal with exceptions other than
errors, consider thefor command. In Section 7.4 you saw howfor can be emulated with
a Tcl procedure usinguplevel . However, the example in Section 7.4 did not properly
handlebreak or continue commands within the loop body. Here is a new implemen-
tation of thefor procedure that usescatch to deal with them:

proc for {init test reinit body} {
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
3 return
4 {uplevel 1 $reinit; continue}

}
error $string

}
}

This new implemenation offor executes the loop body inside acatch command so that
exceptions in the body don’t unwind past thefor procedure. If no exception occurs, or if
the exception is a continue, thenfor just goes on to the next iteration. If a break or return

8.5 Reissuing errors 69

DRAFT (10/9/92): Distribution Restricted

exception occurs thenfor terminates the loop and returns. Lastly, if an error occurs then
for reflects that error upwards using the error command.For ’s handling of return isn’t
quite correct, since it should cause a return from the procedure in whichfor was invoked,
not just fromfor . Unfortunately there is currently no way to achieve the desired behavior
with the current Tcl implementation (this will be fixed soon).

8.5 Reissuing errors

The implementation offor as a procedure in the previous section has one remaining
problem, which occurs when an error is generated by the loop body. Thefor procedure
catches the exception, sees that it is an error, and reissues the error by invoking theerror
command. Unfortunately, neithererrorInfo or errorCode will be set properly in
this case. The variables will reflect the state of execution whenerror is invoked,
whereas they should really reflect the state of execution at the time the original error

Table 8.2.A summary of Tcl exceptions. The first column indicates the value returned bycatch in
each instance. The third column describes when the exception occurs and what is the value of the
string associated with the exception. The last column lists the commands that catch exceptions of
that type (“procedures” means that the exception is caught by a Tcl procedure when its entire body

Return value
from

catch
Description Caught by

0 Normal return. String gives
return value.

Not applicable

1 Error. String gives message
describing the problem.

Catch

2 Thereturn command was
invoked. String gives return
value from procedure or file
source .

Catch , source , procedures

3 Thebreak command was
invoked. String is empty.

Catch , for , foreach ,
while , procedures

4 Thecontinue command was
invoked. String is empty.

Catch , for , foreach ,
while , procedures

70 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

occurred in the loop body. For example, suppose that the following command is typed
after thefor procedure has been defined as above:

set sum 0
for {set i 1} {$i <= 10} {incr i} {

incr sum [expr i*i]
}

When this script is executed an error will be generated by theexpr command because the
dollar signs were accidentally omitted from the references to variablei . After the error is
reissued and unwinding completes,errorInfo will have the following value:

syntax error in expression i*i
while executing

"error $string"
("while" body line 9)
invoked from within

"while {[uplevel 1 [list expr $test]]} {
set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
..."

"case [catch {uplevel 1 $body} string] {
1 {error $string}
2 return
3 return

}"
("while" body line 2)
invoked from within

"for {set i 1} {$i <= 10} {incr i} {
incr sum [expr $i * $i]

}"

Note that the error is attributed to theerror command in thefor procedure, not to the
expr command that originally generated it. A similar problem occurs witherrorCode :
theerror command will set it toNONE, thereby losing any information left there by the
original error (in this particular case, there was no useful information anyway).

To solve both these problems, theerror command may be given two additional
arguments. The first of these is an initial value forerrorInfo , which is used instead of
the information that would have been recorded for theerror command. This initial value
is extended with additional entries as unwinding continues up through higher levels of
active commands. The second additional argument is a value to place in theerrorCode
variable instead of the defaultNONE. In thefor example both of these arguments can
simply be supplied from the current values in the variables, which are the values left there
by the original error:

8.5 Reissuing errors 71

DRAFT (10/9/92): Distribution Restricted

proc for {init test reinit body} {
global errorInfo errorCode
uplevel 1 $init
while {[uplevel 1 [list expr $test]]} {

set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
3 return
4 {uplevel 1 $reinit; continue}

}
error $string $errorInfo $errorCode

}
}

When this new version offor is used with the erroneousexpr command,errorInfo
has the following value at the time theerror command is executed infor :

syntax error in expression "i*i"
while executing

"expr i*i"
invoked from within

"incr sum [expr $i*$i]"
("uplevel" body line 2)
invoked from within

"uplevel 1 $body"

This value describes all the active commands nested inside (but not including) thecatch
command. As the reissued error unwinds, more information gets added toerrorInfo so
that it has the following result when the error has been completely unwound:

syntax error in expression "i*i"
while executing

"expr i*i"
invoked from within

"incr sum [expr i*i]"
("uplevel" body line 2)
invoked from within

"uplevel 1 $body"
("while" body line 1)
invoked from within

"while {[uplevel 1 [list expr $test]]} {
set code [catch {uplevel 1 $body} string]
case $code {

0 {uplevel 1 $reinit; continue}
2 return
..."

(procedure "for" line 4)

72 Errors and Exceptions

DRAFT (10/9/92): Distribution Restricted

invoked from within
"for {set i 1} {$i <= 10} {incr i} {

incr sum [expr $i * $i]
}"

This information is still not completely perfect, since there is no mention inerrorInfo
of theset or catch commands that were active when the error occurred. However,
information about these commands could be appended toerrorInfo before passing its
value to theerror command.

73

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 9
String Manipulation

This chapter describes Tcl’s facilities for manipulating strings. The string commands
mimic the behavior of C library procedures such asscanf , printf , andstrcmp , plus
they provide a few additional features not present in the C library. They allow you to gen-
erate formatted strings, parse strings to extract values, compare strings using any of sev-
eral pattern-matching techniques, and modify strings (e.g. by removing trailing blanks or
converting upper case characters to lower case). Table 9.1 summarizes the Tcl commands
for string processing.

9.1 Generating strings with format

Tcl’s format command provides almost exactly the same facilities as thesprintf pro-
cedure from the ANSI C library. It takes any number of arguments, of which the first is a
format string and the others are values to convert and substitute into the format string. The
format command combines the format string with the values to generate a new string,
which it returns as result. A simple example follows below:

format "There are %d days in a week" 7

There are 7 days in a week

In this example the characters “%d” in the format string are replaced with the decimal
value of the next argument to produce the result.

Theformat command operates by scanning the format string from left to right.
Each character from the format string is appended to the result string unless it is a percent
sign. If it is, then it is not copied to the result string. Instead, the characters following the%

FIGURE

TABLE 9

74 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

format formatString ?value value ...?
Returns a result that is equal toformatString except that thevalue
arguments have been substituted in place of% sequences informat-
String .

regexp ?-indices ? ?-nocase ? exp string ?matchVar ? ?subVar subVar ...?
Determines whether the regular expressionexp matches part or all of
string and returns1 if it does,0 if it doesn’t. If there is a match, informa-
tion about matching range(s) is placed in the variables named bymatchVar
and thesubVar ’s, if they are specified.

regsub ?-all ? ?-nocase ? exp string subSpec varName
Matchesexp againststring as forregexp and returns0 if there is no
match. If there is a match, then the command returns1 and copiesstring
to the variable named byvarName , making substitutions for the matching
portion(s) as specified bysubSpec .

scan string format varName ? varName varName ...?
Parses fields fromstring as specified byformat and places the values
that match the% sequences informat into the variables named by the
varName arguments.

string compare string1 string2
Returns-1 , 0, or1 if string1 is lexicographically less than, equal to, or
greater thanstring2 .

string first string1 string2
Returns the index instring2 of the first character in the leftmost substring
that exactly matches the characters instring1 , or -1 if there is no such
match.

string index string charIndex
Returns thecharIndex ’th character ofstring , or an empty string if
there is no such character. The first character instring has index 0.

string last string1 string2
Returns the index instring2 of the first character in the rightmost sub-
string ofstring2 that exactly matchesstring1 . If there is no matching
substring then-1 is returned.

string length string
Returns the number of characters instring .

string match pattern string
Returns1 if pattern matchesstring using glob-style matching rules (* ,
?, [] , and \) and0 if it doesn’t.

string range string first last
Returns the substring ofstring that lies between the indices given by
first andlast , inclusive. An index of0 refers to the first character in the
string, andlast may beend to refer to the last character of the string.

9.1 Generating strings with format 75

DRAFT (10/9/92): Distribution Restricted

character are treated as aconversion specifier. The conversion specifier controls the con-
version of the next successive argument to a particular format and the result is appended to
the result string. If there are multiple conversion specifiers in the format string, then each
one controls the conversion of one additional argument. Theformat command must be
given enough arguments to meet the needs of all of the conversion specifiers in the format
string.

Each conversion specifier may contain up to five different parts: a set of flags, a mini-
mum field width, a precision, a length modifier, and a conversion character. Any of these
fields may be omitted except for the conversion character. The fields that are present must
appear in the order given above. The paragraphs below discuss each of these fields in turn.

The flags portion of a conversion specifier may contain any of the following charac-
ters, in any order:

- Specifies that the converted argument should be left-justified
in its field (numbers are normally right-justified with leading
spaces if needed).

+ Specifies that a number should always be printed with a sign,
even if positive.

space Specifies that a space should be added to the beginning of the
number if the first character isn’t a sign.

0 Specifies that the number should be padded on the left with
zeroes instead of spaces.

Table 9.1, cont'd.A summary of the Tcl commands for string manipulation.

string tolower string
Returns a value identical tostring except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical tostring except that all lower case characters
have been converted to upper case.

string trim string ?chars ?
Returns a value identical tostring except that any leading or trailing char-
acters that appear inchars are removed.Chars defaults to the white space
characters (space, tab, newline, and carriage return).

string trimleft string ?chars ?
Same asstring trim except that only leading characters are removed.

string trimright string ?chars ?
Same asstring trim except that only trailing characters are removed.

76 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

The second portion of a conversion specifier is a number giving a minimum field
width for this conversion. It is typically used to make columns line up in tabular print-
outs. If the converted argument contains fewer characters than the mnimum field width,
then it will be padded so that it is as wide as the minimum field width. Padding normally
occurs by adding extra spaces on the left of the converted argument, but the0 and- flags
may be used to specify padding with zeroes on the left or with spaces on the right, respec-
tively. If the minimum field width is specified as* rather than a number, then the next
argument to theformat command determines the minimum field width; it must be a
numeric string.

The third portion of a conversion specifier is a precision, which consists of a period
followed by a number. The number is used in different ways for different conversions. For
e, E, f , andF conversions it specifies the number of digits to appear to the right of the
decimal point. Forg andG conversions it specifies the total number of digits to appear,
including those on both sides of the decimal point (however, trailing zeroes after the deci-
mal point will still be omitted unless the# flag has been specified). For integer conver-
sions, it specifies a mimimum number of digits to print (leading zeroes will be added if
necessary). Fors conversions it specifies the maximum number of characters to be
printed; if the string is longer than this then the trailing characters will be dropped. If the
precision is specified as.* then the next argument to theformat command determines
the precision; it must be a numeric string.

The fourth part of a conversion specifier is a length modifier, which must beh or l . If
it is h it specifies that the numeric value should be truncated to a 16-bit value before con-
verting. If it is l it specifies that the numeric value should be extended to 32-bits before
converting. Almost all machines that Tcl runs on use 32 bits by default, so thel modifier
is seldom useful. For that matter, theh modifier is rarely useful either.

The last thing in a conversion specifier is an alphabetic character that determines what
kind of conversion to perform. Table 9.2 lists the conversion characters that are available
in theformat command and the kind of conversion performed by each. For the numeri-
cal conversions the argument being converted must be an integer or floating-point string;
format converts the argument to binary and then converts it back to a string according to
the conversion specifier.

Here are a few examples of complete conversion specifiers and the results that they
produce:

format %10d -243

Requests an alternate output form. Foro andO conversions it
guarantees that the first digit is always0. Forx or X conver-
sions,0x or 0X (respectively) will be added to the beginning
of the result unless it is zero. For all floating-point conver-
sions (e, E, f , F, g, andG) it guarantees that the result always
has a decimal point. Forg andG conversions it specifies that
trailing zeroes should not be removed.

9.1 Generating strings with format 77

DRAFT (10/9/92): Distribution Restricted

 -243

format %010d -243

-000000243

format %-10d -243

-243

format %10s "Two words"

 Two words

format %10.5s "Two words"

Table 9.2.Conversion characters for theformat command. The value being converted must have
a proper integer or floating-point syntax as specified in the table.

Character Type of Conversion

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.

o Convert integer to unsigned octal string.

x, X Convert integer to unsigned hexadecimal string (useabc-
def for x andABCDEF for X).

c Convert integer to single ASCII character.

s No conversion; just insert string.

f Convert floating-point number to signed decimal string of
the formxx .yyy , where the number ofy ’s is determined by
the precision (default: 6). If the precision is 0 then no deci-
mal point is output.

e, E Convert floating-point number to scientific notation in the
form x .yyy e zz , where the number ofy ’s is determined
by the precision (default: 6). If the precision is 0 then no
decimal point is output. If theE form is used thenE is
printed instead ofe.

g, G If the exponent is less than -4 or greater than or equal to the
precision, then convert floating-point number as for%e or
%E. Otherwise convert as for%f. Trailing zeroes and a trail-
ing decimal point are omitted.

% No conversion: just insert%.

78 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

 Two w

format %.2f -243

-243.00

format %.2e -243

-2.43e+02

Theformat command is really only needed if you’re using relatively fancy conver-
sion specifiers. If you want to do a simple substitution, you can already do it easily in Tcl
without usingformat . For example, if the variabledays has the value30 , the following
commands all produce the same result:

set x [format "There are %d days in April" $days]

There are 30 days in April

set x [format "There are %s days in April" $days]

There are 30 days in April

set x "There are $days days in April"

There are 30 days in April

Note that in this case%d behaves exactly the same as%s (except that it does more work
and hence is probably slower); this would not be true ifdays had the hexadecimal value
0x30 .

9.2 Extracting characters: string index and string range

Thestring command provides a number of features for general-purpose string manipu-
lation. It is actually about a dozen commands rolled into one; the first argument to
string selects one of many options. For example, consider the command

string index "Sample string" 3

p

When the first argument tostring is index , as in this case, then there must be two
additional arguments. The first of these may be any string value, and the last argument
must be a number;string index uses the last argument as an index into the string and
returns the indexed character as result. An index of0 selects the first character.

Thestring range command is similar tostring index except that it takes
two indices and returns all the characters from the first index to the second, inclusive:

string range "Sample string" 3 7

ple s

The second index may have the valueend to select all the characters up to the end of the
string:

string range "Sample string" 3 end

9.3 Parsing strings with scan 79

DRAFT (10/9/92): Distribution Restricted

ple string

In bothstring range andstring index an empty string will be returned if the
index or indices are completely outside the range of the string.

There are a number of places in Tcl where related commands are grouped together
into a single Tcl command likestring with a first argument that chooses among the var-
ious options. I did this to avoid polluting the Tcl command space with lots of tiny com-
mands. If you build collections of related commands yourself, I recommend using this
same approach for the commands you write.

9.3 Parsing strings with scan

Thescan command provides almost exactly the same facilities as thesscanf procedure
from the ANSI C library.Scan is roughly the inverse offormat . It starts with a format-
ted string, parses the string under the control of a format string, extracts fields correspond-
ing to% conversion specifiers in the format string, and places the extracted values in Tcl
variables. For example, after the following command is executed variablea will have the
value 16 and variableb will have the value 24.2:

scan "16 units, 24.2% margin" "%d units, %f" a b

2

The first argument toscanf is the string to parse, the second is a format string that con-
trols the parsing, and any additional arguments are names of variables to fill in with con-
verted values. The return value of 2 indicates that two conversions were completed
successfully.

Scan operates by scanning the string and the format together. If the next character in
the format is a blank or tab then it is ignored. Otherwise, if it isn’t a% character then it
must match the next non-white-space character of the string. When a% is encountered in
the format, it indicates the start of a conversion specifier. A conversion specifier contains
three fields after the%: a* , which indicates that the converted value is to be discarded
instead of assigned to a variable; a number indicating a maximum field width; and a con-
version character. All of these fields are optional except for the conversion character.

Whenscan finds a conversion specifier in the format, it first skips any white-space
characters in the input string. Then it converts the next input characters according to the
conversion specifier and stores the result in the variable given by the next argument to
scan . See Table 9.3 for a list of the conversion characters and their meanings. The num-
ber of characters read from the input for a conversion is the largest number that makes
sense for that particular conversion (e.g. as many decimal digits as possible for%d, as
many octal digits as possible for%o, and so on). The input field for a given conversion ter-
minates either when a white-space character is encountered or when the maximum field
width has been reached, whichever comes first. If a* is present in the conversion specifier
then no variable is assigned and the nextscan argument is not consumed.

80 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

For example, consider the following command:

scan 12345678 %*2d%3o%d a b

2

Table 9.3.Conversion characters for thescanf command.

Character Type of Conversion

d The input field must be a decimal integer. It is read in and
the value is stored in the variable as a decimal string.

o The input field must be an octal integer. It is read in and the
value is stored in the variable as a decimal string.

x The input field must be a hexadecimal integer. It is read in
and the value is stored in the variable as a decimal string.

c A single character is read in and its ASCII value is stored in
the variable as a decimal string. Initial white space is not
skipped in this case, so the input field may be a white-space
character. This conversion is different from the ANSI stan-
dard in that the input field always consists of a single char-
acter and no field width may be specified.

s The input field consists of all the characters up to the next
white-space character; the characters are copied to the vari-
able.

e, f, g The input field must be a floating-point number consisting
of an optional sign, a string of decimal digits possibly con-
taining a decimal point, and an optional exponent consisting
of ane or E followed by an optional sign and a string of
decimal digits. It is read in and stored in the variable as a
floating-point string.

[chars] The input field consists of any number of characters in
chars . The matching string is stored in the variable. If the
first character between the brackets is a] then it is treated
as part ofchars rather than the closing bracket for the set.

[^ chars] The input field consists of any number of characters not in
chars . The matching string is stored in the variable. If the
character immediately following thê is a] then it is
treated as part of the set rather than the closing bracket for
the set.

9.4 Simple searching and comparison 81

DRAFT (10/9/92): Distribution Restricted

The return value of2 indicates that two values were successfully converted and assigned
to variables (three conversions were performed but the first converted value was discarded
because of the* in its conversion specifier). After the command completes variablea has
the value229 (the decimal equivalent of the octal value345) andb has the value678 .

9.4 Simple searching and comparison

This section and the next two that follow describe several ways to search strings for partic-
ular substrings or compare strings using various pattern-matching techniques. This section
presents three simple mechanisms that are available as options of thestring command.

The commandstring first takes two additional string arguments as in the fol-
lowing example:

string first th "In the tub where I bathed today"

3

It searches the second string to see if there is a substring that is identical to the first string.
If so then it returns the index of the first character in the leftmost matching substring; if not
then it returns-1 . The commandstring last is similar except it returns the starting
index of the rightmost matching substring:

string last th "In the tub where I bathed today"

21

The commandstring compare takes two additional arguments and compares
them in their entirety. It returns-1 if the first string is lexicographically less than the sec-
ond, 0 if they are identical, and1 if the first is lexicographically greater than the second:

string compare Michigan Minnesota

-1

string compare Michigan Michigan

0

9.5 Glob-style pattern matching

Tcl offers two different kinds of pattern matching: “glob” style, which is named after the
file name matching used in shells, and regular expressions. This section describes the glob
style and the next section describes regular expressions.

The commandstring match implements glob-style pattern matching. It takes
two additional arguments, a pattern and a string, and returns1 if the pattern matches the
string,0 if it doesn’t. For the pattern to match the string, each character of the pattern must

82 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

be the same as the corresponding character of the string (differences in case are signifi-
cant), except that the following pattern characters are interpreted specially:

Glob-style matching is similar to that used by the shells for file names. The following
commands illustrate some of the features of glob-style matching:

string match a*b*a abracadabra

1

string match a?[1234567890A-Z] abX

1

string match a?[1234567890A-Z] abbX

0

9.6 Pattern matching with regular expressions

The glob style of matching described in the previous section is simple and easy to work
with, but it is limited in the kinds of patterns that can be expressed. Tcl’s second form of
pattern matching uses regular expressions like those available in theegrep program.
Regular expressions are more complex than glob-style patterns but much more powerful.
Tcl’s regular expressions are based on Henry Spencer’s publically available implementa-
tion, and parts of the description below are copied from Spencer’s documentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are calledatoms, and the simplest form of regular expression consists of one or
more atoms. For a regular expression to match an input string, there must be a substring of
the input where each of the regular expression’s atoms (or other components, as you’ll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular expressionabc matches any
string containingabc , such asabcdef or xabcy .

A number of characters have special meanings in regular expressions; they are sum-
marized in Table 9.4. The characters^ and$ are atoms that match the beginning and end
of the input string respectively; thus^abc matches any string that starts withabc , abc$
matches any string that ends inabc , and^abc$ matchesabc and nothing else. The atom

? Matches any single character.

* Matches any sequence of zero or more characters.

[chars] Matches any single character inchars . If chars contains a
sequence of the forma- b then any character betweena and
b, inclusive, will match.

\ x Matches the single characterx . This provides a way to avoid
special interpretation for any of the characters*?[]\ in the
pattern.

9.6 Pattern matching with regular expressions 83

DRAFT (10/9/92): Distribution Restricted

. matches any single character, and the atom\ x , wherex is any single character, matches
x . For example, the regular expression.\$ matches any string that contains a dollar-sign,
as long as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular
expressions. The first form consists of any regular expression enclosed in parentheses,
such as(a.b) . Parentheses are used for grouping. They allow operators such as * to be
applied to entire regular expressions as well as atoms. They are also used in theregexp

Table 9.4.The special characters permitted in regular expression patterns.

Character(s) Meaning

. Matches any single character.

^ Matches the null string at the start of the input string.

$ Matches the null string at the end of the input string.

\ x Matches the characterx .

[chars] Matches any single character fromchars . If the first char-
acter ofchars is^ then it matches any single character not
in the remainder ofchars . A sequence of the forma- b in
chars is treated as shorthand for all of the ASCII charac-
ters betweena andb, inclusive. If the first character in
chars (possibly following â) is] then it is treated liter-
ally (as part ofchars instead of a terminator). If a -
appears first or last inchars then it is treated literally.

(regexp) Matches anything that matches the regular expression
regexp . Used for grouping and for identifying pieces of
the matching substring.

* Matches a sequence of 0 or more matches of the preceding
atom.

+ Matches a sequence of 1 or more matches of the preceding
atom.

? Matches either a null string or a match of the preceding
atom.

regexp1 | regexp2 Matches anything that matches eitherregexp1 or
regexp2 .

84 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

andregsub commands to identify pieces of the matching substring for special process-
ing. Both of these uses are described in more detail below.

The final form for an atom is arange, which is a collection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of the forma- b among the characters, then
all of the ASCII characters betweena andb are treated as acceptable. Thus the regular
expression[0-9a-fA-F] matches any string that contains a hexadecimal digit. If the
character after the[is a^ then the sense of the range is reversed: it only matches charac-
tersnot among those specified between the^ and the] . It is possible to specify a- , ^ , or
] as one of the acceptable or unacceptable characters of the range, but only with special
care about where the character appears in the range; see Table 9.4 for details.

The three operators* , +, and? may follow an atom to specify repetition. If an atom is
followed by* then it matches a sequence of zero or more matches of that atom. If an atom
is followed by+ then it matches a sequence of one or more matches of the atom. If an
atom is followed by? then it matches either an empty string or a match of the atom. For
example,̂ (0x)?[0-9a-fA-F]+$ matches strings that are proper hexadecimal num-
bers, i.e. those consisting of an optional0x followed by one or more hexadecimal digits.

Finally, regular expressions may be joined together with the| operator. The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the| . Thus^((0x)?[0-9a-fA-F]+|[0-9]+)$ matches any string that is
either a hexadecimal number or a decimal number. Note that the information between
parentheses may be any regular expression, including additional regular expressions in
parentheses, so it is possible to build up quite complex structures.

Theregexp command is used to invoke regular expression matching in Tcl. In its
simplest form it takes two arguments: the regular expression pattern and an input string. It
returns0 or 1 to indicate whether or not the pattern matched the input string:

regexp {^[0-9]+$} 510

1

Note that the pattern had to be enclosed in braces so that the characters$, [, and] are
passed through to theregexp command instead of triggering variable and command sub-
stitution.

If regexp is invoked with additional arguments after the input string, then each
additional argument is treated as the name of a variable. The first variable is filled in with
the substring that matched the entire regular expression. The second variable is filled in
with the portion of the substring that matched the leftmost parenthesized subexpression
within the pattern; the third variable is filled in with the match for the next parenthesized
subexpression, and so on. If there are more variable names than parenthesized subexpres-
sions then the extra variables are set to empty strings. For example, after executing the
command

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c

9.6 Pattern matching with regular expressions 85

DRAFT (10/9/92): Distribution Restricted

variablea will have the value “10 km ”, b will have the value10 , andc will have the
valuekm. This ability to extract portions of the matching substring allowsregexp to be
used for parsing.

It is also possible to specify two extra switches toregexp before the regular expres-
sion argument. A-nocase switch specifies that alphabetic atoms should match either
upper- or lower-case letters. For example:

regexp {[a-z]} A

0

regexp -nocase {[a-z]} A

1

The-indices switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with a list giving the
first and last indices of the substring’s range within the input string. After the command

regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
a b c

variablea will have the value “5 9 ”, b will have the value “5 6 ”, andc will have the
value “8 9 ”. If there are extra variables specified with the-indices option, they are set
to “-1 -1 ”.

In general there may be more than one way to match a regular expression to an input
string. For example, consider the following command:

regexp (a*)b* aabaaabb x y

1

Considering only the rules given so far,x andy could have the valuesaabb andaa ,
aaab andaaa , ab anda, or any of several other combinations. To resolve this potential
ambiguity the regular expression parser chooses among alternatives using the rule “first
then longest.” In other words, it considers the possible matches in order working from left
to right across the input string and the pattern, and it attempts match longer pieces of the
input string before shorter ones. More specifically, the following rules apply in decreasing
order of priority:

1. If a regular expression could match two different parts of an input string then it will
match the one that begins earliest.

2. If a regular expression contains| operators then the leftmost matching sub-expression
is chosen.

3. In * , +, and? constructs, longer matches are considered before shorter ones.

4. In sequences of expression components the components are considered from left to
right.

In the example from above,(a*)b* matchesaab (the(a*) portion of the pattern is
matched first, and it consumes the leadingaa ; then theb* portion of the pattern consumes
the nextb). After the command

86 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

regexp (ab|a)(b*)c abc x y z

x will be abc , y will ab , andz will be an empty string. Rule 4 specifies that(ab|a)
gets first shot at the input string and Rule 2 specifies that theab sub-expression is checked
before thea sub-expression. Thus theb has already been claimed before the(b*) com-
ponent is checked and(b*) must match an empty string.

9.7 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions using theregsub com-
mand. Consider the following example:

regsub there "They live there lives" their x

1

The first argument toregsub is a regular expression pattern and the second argument is
an input string, just as forregexp . And, likeregexp , regsub returns1 if the pattern
matches the string,0 if it doesn’t. However,regsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-
string. The replacement value is contained in the third argument toregsub , and the new
string is stored in the variable named by the final argument toregsub . Thus, after the
above command completesx will have the value “They live their lives ”. If the
pattern had not matched the string then0 would have been returned andx would not have
been modified.

Two special switches may appear as arguments toregsub before the regular expres-
sion. The first is-nocase , which causes case differences between the pattern and the
string to be ignored just as forregexp . The second possible switch is-all . Normally
regsub makes only a single substitution, for the first match found in the input string.
However, if-all is specified thenregsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x

x will have the valuezzbzzbzz . If -all had been omitted thenx would have been set
to zzbaba .

In the examples above the replacement string is a simple literal value. However, if the
replacement string contains a& or \0 then then the& or \0 is replaced in the substitution
with the substring that matched the regular expression. If a sequence of the form\ n
appears in the replacement string, wheren is a decimal number, then the substring that
matched then-th parenthesized subexpression is substituted instead of the\ n. Back-
slashes may be used in the replacement string to allow&, \0 , \ n, or backslash characters
to be substituted verbatim without any special interpretation. For example, the command

regsub -all a|b axaab && x

9.8 Length, case conversion, and trimming 87

DRAFT (10/9/92): Distribution Restricted

doubles all of thea’s andb’s in the input string. In this case it setsx to aaxaaaabb . Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x

replaces sequences ofa’s with a singlez if they precede ab but don’t also follow ab. In
this casex is set tozbaabxzb . In general it’s a good idea to enclose complex replace-
ment strings in braces as in the example above; otherwise the Tcl parser will process back-
slash sequences and the replacement string received byregsub may not contain
backslashes that are needed.

9.8 Length, case conversion, and trimming

The string command provides three additional features that haven’t yet been discussed:
length counting, case conversion, and trimming. Thestring length command counts
the number of characters in a string and returns that number:

string length "sample string"

13

Thestring toupper command converts all lower-case characters in a string to
upper case, and thestring tolower command converts all upper-case characters in
its argument to lower-case:

string toupper "Watch out!"

WATCH OUT!

string tolower "15 Charing Cross Road"

15 charing cross road

Thestring command provides three options for trimming:trim , trimleft , and
trimright . Each option takes two additional arguments: a string to trim and an optional
set of trim characters. Thestring trim command removes all instances of the trim
characters from both the beginning and end of its argument string, returning the trimmed
string as result:

string trim aaxxxbab abc

xxx

Thetrimleft andtrimright options work in the same way except that they only
remove the trim characters from the beginning or end of the string, respectively. The trim
commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

88 SString Manipulation

DRAFT (10/9/92): Distribution Restricted

89

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 10
Accessing Files

This chapter describes the built-in Tcl commands for dealing with files. The commands
allow you to read and write files sequentially or in a random-access fashion. They also
allow you to retrieve information kept by the system about files, such as the time of last
access. Lastly, they can be used to manipulate file names; for example, you can remove the
extension from a file name or find the names of all files that match a particular pattern. See
Table 10.1 for a summary of the file-related commands.

The commands described in this chapter are only available on UNIX-like systems and
systems that support the kernel calls defined in the POSIX standard. If you are using Tcl
on another system, such as a Macintosh or a PC, then the file commands may not be
present and there may be other commands that provide similar functionality for your sys-
tem; talk to your local Tcl wizards to see what is available.

10.1 File names

File names are specified to Tcl using the normal UNIX syntax. For example, the file name
x/y/z refers to a file namedz that is located in a directory namedy, which in turn is
located in a directory namedx , which must be in the current working directory. The file
name/top refers to a file namedtop in the root directory. You can also use tilde nota-
tion to specify a file name relative to a particular user’s home directory. For example, the
name~ouster/mbox refers to a file namedmbox in the home directory of user
ouster , and~/mbox refers to a file namedmbox in the home directory of the user run-
ning the Tcl script. These conventions (and the availability of tilde notation in particular)
apply to all Tcl commands that take file names as arguments.

FIGURE

TABLE 1

90 Accessing Files

DRAFT (10/9/92): Distribution Restricted

Table 10.1.A summary of the Tcl commands for manipulating files (continued on next page).

cd ?dirname ?
Change the current working directory todirname , or to the home directory
(as given by theHOME environment variable) ifdirName isn’t given.
Returns an empty string.

close ?fileId ?
Close the file given byfileId . Returns an empty string.

eof ?fileId ?
Returns1 if an end-of-file condition has occurred onfileId , 0 otherwise.

file option name ?arg arg ...?
Perform one of several operations on the filename given byname or on the
file that it refers to, depending onoption . See Table 10.2 for details.

flush fileId
Write out any buffered output that has been generated forfileId . Returns
an empty string.

gets fileId ?varName?
Read the next line fromfileId and discard its terminating newline. If
varName is specified, place the line in that variable and return a count of
characters in the line (or-1 for end of file). IfvarName isn’t specified,
return line as result (or an empty string for end of file).

glob ?-nocomplain ? ?pattern pattern ...?
Return a list of all file names that match any of thepattern arguments,
usingcsh rules for pattern matching (special characters?, * , [] , {}, and \).
If -nocomplain isn’t specified then an error occurs if the return list
would be empty.

open name ?access ?
Open filename in the mode given byaccess . Access must ber , r+ , w,
w+, a, ora+ and defaults tor . Returns a file identifier for use in other com-
mands likegets andclose . If the first character ofname is “| ” then a
command pipeline is invoked instead of opening a file (see Section 11.2 for
more information).

puts fileId string ?nonewline ?
Write string to fileId , appending a newline character unlessnonew-
line is specified. Returns an empty string.

pwd
Returns the full path name of the current working directory.

10.2 Basic file I/O 91

DRAFT (10/9/92): Distribution Restricted

10.2 Basic file I/O

The Tcl commands for file I/O are similar to the procedures in the C standard I/O library,
both in their names and in their behavior. To access a file you must first open it with the
open command:

open main.c r

f ile3

Theopen command takes as arguments the name of a file and an access mode. The access
mode provides information such as whether you’ll be reading the file or writing it, and
whether you want to append to the file to access it from the beginning. The access mode
must have one of the following values:

r Open for reading only. The file must already exist.

r+ Open for reading and writing; the file must already exist.

w Open for writing only. Truncate the file if it already exists,
otherwise create a new empty file.

w+ Open for reading and writing. Truncate the file if it already
exists, otherwise create a new empty file.

a Open for writing only and set the initial access position to the
end of the file. If the file doesn’t exist then create a new
empty file.

Table 10.1, cont'd.A summary of the Tcl commands for manipulating files.

read fileId ?nonewline ?
Read and return all of the bytes remaining infileId . If nonewline is
specified then the final newline, if any, is dropped.

read fileId numBytes
Read and return the nextnumBytes bytes fromfileId (or up to the end
of the file, if fewer thannumBytes bytes are left).

seek fileId offset ?origin ?
PositionfileId so that the next access starts atoffset bytes fromori-
gin . Origin may bestart , current , orend , and defaults tostart .
Returns an empty string.

tell fileId
Returns the current access position forfileId .

92 Accessing Files

DRAFT (10/9/92): Distribution Restricted

If you don’t specify an access mode then it defaults tor .
Theopen command returns a string that identifies the open file, such asfile3 in

the above example. This file identifier is used when invoking other commands to manipu-
late the open file, such asgets , puts , andclose . Normally you will save the file iden-
tifier in a variable when you open a file and then use that variable to refer to the open file.
You should not expect the identifiers returned byopen to have any particular format.
Right now they have the formatfile x wherex is the UNIX descriptor number for the
file, but this format might change in the future.

Three file identifiers have well-defined names and are always available to you, even if
you haven’t explicitly opened any files. These arestdin , stdout , andstderr ; they
refer to the standard input, output, and error channels for the process in which the Tcl
script is executing.

Once you’ve opened a file you can read and write it using thegets , read , and
puts commands.Gets is used for reading files a line at a time, and it has two forms. In
the most common form, you invokegets with two arguments, which are a file identifier
and the name of a variable:

gets file3 line

18

set line

#include <stdio.h>

In this casegets reads the next line from the open file, discards the terminating newline
character, stores the line in the named variable, and returns a count of the number of char-
acters stored into the variable. If the end of the file is reached before reading any charac-
ters then an empty string is stored into the variable and-1 is returned.

You can also omit the variable name when invokinggets . In this case the contents of
the line (minus the newline, of course) are returned as the command’s result. If the end of
the file is reached before reading any characters then an empty string is returned. An
empty string is also returned for a line with no characters except the newline, but you can
use theeof command described in Section 10.3 below to tell the difference between these
two cases.

Theread command may be used for non-line-oriented input. It takes either two or
three arguments, of which the first is always a file identifier. Ifread is invoked with only
a single argument then it reads all of the remaining bytes from the file and returns them as
result. Ifnonewline is specified as the second argument, then the last character of the
file is discarded if it is a newline. Otherwise the second argument must be a number telling
how many bytes to read:read will read this many bytes from the file and return them as

a+ Open the file for reading and writing and set the initial access
position to the end of the file. If the file doesn’t exist then cre-
ate a new empty file.

10.3 Random access to files 93

DRAFT (10/9/92): Distribution Restricted

its result. If there are fewer bytes left in the file than the number requested, then all of the
remaining bytes will be returned. For example, the command

set buffer [read file3 1000]

will read the next 1000 bytes fromfile3 and place them in the variablebuffer .
Theputs command writes data to an open file. It takes two or three arguments, of

which the first is a file identifier and the second is a string to output. If only two arguments
are provided, as in

puts stdout "Hello, world"

thenputs appends a newline character to the string and outputs it to the file. In the above
example, “Hello, world ” is printed to standard output followed by a newline charac-
ter. If a third argument is specified toputs then it must be the keywordnonewline or
an abbreviation of it. This causesputs not to append a newline character to the string.

Puts uses the buffering scheme of the C standard I/O library. This means that infor-
mation passed toputs may not appear immediately in the target file. In most cases it will
be saved in the application’s memory until a large amount of data has accumulated for the
file, at which point all of the data will be written out in a single operation. If you need for
data to appear in a file immediately then you should invoke theflush command:

flush file3

Theflush command takes a file identifier as its argument and forces any buffered output
data for that file to be written to the file.Flush doesn’t return until the data has been writ-
ten.

When you are finished reading or writing a file you should invoke theclose com-
mand, giving it the identifier for the file as its argument:

close file3

Close will flush any buffered data for the open file and release the resources associated
with it. In most systems there is a limit on how many files may be open at one time, so it is
important to close files as soon as you are finished reading or writing them.

10.3 Random access to files

File I/O is sequential by default: eachread or gets command returns the next bytes
after the previousgets or read command, and eachputs command writes the bytes
immediately following those written by the previousputs command. However, you can
use theseek , tell , andeof commands to access files non-sequentially.

Each open file has anaccess position, which determines the location in the file where
the next read or write will occur. When a file is opened the access position is set to the
beginning or end of the file, depending on the access mode you specified toopen . After
each read or write operation the access position is incremented by the number of bytes
transferred. Theseek command may be used to change the current access position. In its

94 Accessing Files

DRAFT (10/9/92): Distribution Restricted

simplest formseek takes two arguments, which are a file identifier and an integer offset
within the file. For example, the command

seek file3 2000

changes the access position forfile3 so that the next read or write will start at byte num-
ber 2000 in the file. The command

seek file3 0

resets the file’s access position to the beginning of the file.
Seek can also take a third argument that specifies an origin for the offset. The third

argument must be eitherstart , current , orend . Start produces the same effect as
if the argument is omitted: the offset is measured relative to the start of the file.Current
means that the offset is measured relative to the file’s current access position. For example,
the following command moves the access position forward 10 bytes, skipping over the
intervening data:

seek file3 10 current

If the origin isend then the offset is measured relative to the end of the file. For example,
the following command sets the access position to 100 bytes before the end of the file:

seek file3 -100 end

If the origin iscurrent or end then the offset may be either positive or negative; for
start the offset must be positive. It is possible to seek past the current end of the file, in
which case the file will contain a hole (check the documentation for your operating system
for more information on what this means).

Thetell command returns the current access position for a particular file identifier:

tell file3

186

This allows you to record a position and return to that position later on.
Seek andtell may only be used on files that support random-access I/O, such as

ordinary disk files. If you attempt to useseek with a file identifier that doesn’t support
random access I/O, such as a terminal or other sequential device, thenseek will generate
an error. If you invoketell on such a file then it will return –1 .

Theeof command indicates whether an open file is currently positioned at the end of
the file. It takes a file identifier as argument and returns1 if the current access position is
at the end of the file,0 otherwise:

eof file3

0

10.4 The current working directory 95

DRAFT (10/9/92): Distribution Restricted

10.4 The current working directory

Tcl provides two commands that help to manage the current working directory:pwd and
cd . Pwd takes no arguments and returns the full path name of the current working direc-
tory. Cd takes a single argument and changes the current working directory to the value of
that argument. Ifcd is invoked with no arguments then it changes the current working
directory to the home directory of the user running the Tcl script (cd uses the value of the
HOME environment variable as the path name of the home directory).

10.5 Manipulating file names

Tcl contains two built-in commands that you can use to manipulate filenames as opposed
to file contents. These commands don’t provide any new functionality, since you could
produce the same effects using other Tcl commands, but they make it easy to perform sev-
eral common operations on file names.

The first of these commands isfile . File is a general-purpose command with
many options that can be used both to manipulate file names and also to retrieve informa-
tion about files. See Table 10.2 for a summary of all the options tofile . This section dis-
cusses the name-related options and Section 10.6 describes the other options.

File dirname returns the name of the directory containing a particular file:

file dirname /a/b/c

/a/b

file dirname main.c

.

File extension returns the extension for a file name (all the characters starting
with the last. in the name), or an empty string if the name contains no extension:

file extension src/main.c

.c

File rootname returns everything in a file name except the extension:

file rootname src/main.c

src/main

file rootname foo

foo

Lastly, file tail returns the last element in a file’s path name (i.e. the name of the
file within its directory):

file tail /a/b/c

c

file tail foo

96 Accessing Files

DRAFT (10/9/92): Distribution Restricted

Table 10.2.A summary of the options for thefile command (continued on next page).

file atime name
Returns a decimal string giving the time at which filename was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

file dirname name
Returns all of the characters inname up to but not including the last/ char-
acter. Returns. if name contains no slashes,/ if the last slash inname is its
first character.

file executable name
Returns1 if name is executable by the current user,0 otherwise.

file exists name
Returns1 if name exists and the current user has search privilege for the
directories leading to it,0 otherwise.

file extension name
Returns all of the characters inname after and including the last dot. Returns
an empty string if there is no dot inname.

file isdirectory name
Returns1 if name is a directory,0 otherwise.

file isfile name
Returns1 if name is an ordinary file,0 otherwise.

file lstat name varName
Invokes thelstat kernel call onname and sets elements ofarrayName
to hold information returned bylstat . This option is identical to thestat
option unlessname refers to a symbolic link, in which case this command
returns information about the link instead of the file it points to.

file mtime name
Returns a decimal string giving the time at which filename was last modi-
fied, measured in seconds from 12:00 A.M. on January 1, 1970.

file owned name
Returns1 if name is owned by the current user,0 otherwise.

file readable name
Returns1 if name is readable by the current user,0 otherwise.

file readlink name
Returns the value of the symbolic link given byname (the name of the file it
points to).

10.5 Manipulating file names 97

DRAFT (10/9/92): Distribution Restricted

foo

Thesefile commands all operate purely on file names. They make no system calls and
don’t check to see if the names actually correspond to files.

Theglob command also operates on file names. It mimics the behavior of file name
globbing incsh , taking one or more patterns as arguments and returning a list of all the
file names that match the pattern(s):

glob *.c *.h

main.c hash.c hash.h

It uses the same matching rules as thestring match command (see Section 9.5) and
returns the names of all of the matching files. In the above exampleglob returned all of
the file names in the current directory that end in.c or .h .

If a pattern contains an open-brace, then the brace should be followed by one or more
strings separated by commas and terminated with a close-brace, such as
{src,backup}/*.c . Glob treats such a pattern as if it were actually multiple patterns,
one containing each of the strings between the braces (src/*.c andbackup/*.c in

Table 10.2, cont'd.A summary of the options for thefile command.

file rootname name
Returns all of the characters inname up to but not including the last. char-
acter. Returnsname if it doesn’t contain any dots.

file size name
Returns a decimal string giving the size of filename in bytes.

file stat name varName
Invokesstat kernel call onname and sets elements ofarrayName to
hold information returned bystat . The following elements are set, each as
a decimal string:atime , ctime , dev , gid , ino , mode, mtime , nlink ,
size , anduid .

file tail name
Returns all of the characters inname after the last/ character. Returns
name if it contains no slashes.

file type name
Returns a string giving the type of filename. The return value will be one of
file , directory , characterSpecial , blockSpecial , fifo ,
link , orsocket .

file writable name
Returns1 if name is writable by the current user,0 otherwise.

98 Accessing Files

DRAFT (10/9/92): Distribution Restricted

this example). For example, the following command returns a list of all of the.c or .h
files in two subdirectories:

glob {{src,backup}/*.[ch]}

src/main.c src/hash.c src/hash.h backup/hash.c

The extra set of braces around the glob pattern is needed to keep the Tcl parser from
applying its usual interpretation to the {} and [] characters within the pattern.

Glob patterns may contain multiple sets of{} elements, or any combination of the
various special characters. If a pattern contains any of the string matching characters
[]?*\ thenglob only returns the names of actual files that match the pattern. If a pat-
tern doesn’t contain any of the string matching characters thenglob returns names with-
out checking to be sure that the corresponding files actually exist. This behavior may seem
strange but is similar to what occurs incsh .

If the list of file names to be returned byglob is empty then it normally generates an
error, as in the following command:

glob *.x *.y

no f ile matched glob patterns "*.x *.y"

However, if the first argument to glob, before any patterns, is-nocomplain thenglob
will not generate an error if its result is an empty list.

10.6 File information commands

In addition to the options already discussed in Section 10.5 above, thefile command
provides many other options that can be used to retrieve information about files. Each of
these options exceptstat has the form

file option name

whereoption specifies the information desired, such asexists or readable or
size , andname is the name of the file. Table 10.2 summarizes all of the options for the
file command.

Theexists , isfile , isdirectory , andtype options return information about
the nature of a file.File exists returns1 if there exists a file by the given name and0
if there is no such file.File exists also returns0 if the file exists but the current user
doesn’t have search permission for the directories leading to it.File isfile returns1
if the file is an ordinary disk file and0 if it is something else, such as a directory or device
file. File isdirectory returns1 if the file is a directory and0 otherwise.File
type returns a string such asfile , directory , orsocket that identifies the file
type.

Thereadable , writable , andexecutable options return0 or 1 results to
indicate whether the current user is permitted to carry out the indicated action on the file.
Theowned option returns1 if the current user is the file’s owner and0 otherwise.

10.6 File information commands 99

DRAFT (10/9/92): Distribution Restricted

Thesize option returns a decimal string giving the size of the file in bytes.File
mtime returns the time when the file was last modified. The time value is returned in the
standard UNIX form for times, namely an integer that counts the number of seconds since
12:00 A.M. on January 1, 1970. Theatime option is similar tomtime except that it
returns the time when the file was last accessed.

Thestat option provides a simple way to get many pieces of information about a
file at one time. This can be significantly faster than invokingfile many times to get the
pieces of information individually.File stat also provides additional information that
isn’t accessible with any other file options. It takes two additional arguments, which are
the name of a file and the name of a variable, as in the following example:

file stat main.c info

In this case the name of the file ismain.c and the variable name isinfo . The variable
will be treated as an array and the following elements will be set, each as a decimal string:

Theatime , mtime , andsize elements have the same values as produced by the corre-
spondingfile options discussed above. For more information on the other elements,
refer to your system documentation for thestat system call; each of the elements is
taken directly from the corresponding field of the structure returned bystat .

The lstat andreadlink options are useful when dealing with symbolic links,
and they can only be used on systems that support symbolic links.File lstat is iden-
tical to file stat for ordinary files, but when it is applied to a symbolic link it returns
information about the symbolic link itself, whereasfile stat will return information
about the file the link points to.File readlink returns the contents of a symbolic link,
i.e. the name of the file that it refers to; it may only be used on symbolic links.

atime Time of last access.

ctime Time of last status change.

dev Identifier for device containing file.

gid Identifier for the file’s group.

ino Serial number for the file within its device.

mode Mode bits for file.

mtime Time of last modification.

nlink Number of links to file.

size Size of file, in bytes.

uid Identifier for the user that owns the file.

100 Accessing Files

DRAFT (10/9/92): Distribution Restricted

10.7 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopen or file stat on a file that doesn’t exist, or if an I/O error occurs in read-
ing a file. The Tcl commands detect these system call errors and in most cases the Tcl
commands will return errors themselves. The error message will identify the error that
occurred:

open bogus

couldn’t open "bogus": no such f ile or directory

When an error occurs in a system call Tcl also sets theerrorCode variable to pro-
vide more precise information. You may find this information useful as part of error recov-
ery so that, for example, you can determine exactly why the the file wasn’t accessible
(Was there no such file? Was it protected to prevent access? ...). If a system call error has
occurred thenerrorCode will consist of a list with three elements:

set errorCode

UNIX ENOENT {no such f ile or directory}

The first element is alwaysUNIX to indicate that the error occurred in aUNIX system call.
The second element is the official name for the error (ENOENT in the above example).
Refer to your system documentation or to the include fileerrno.h for a complete list of
the error names for your system. These names adhere to the POSIX standard as much as
possible. The third element is the error message that corresponds to the error. This string
usually appears in the error message returned by the Tcl command. Tcl uses the standard
list of error messages provided by your system, if there is one, and adheres to the POSIX
standard as much as possible.

101

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 11
Processes

Tcl provides simple facilities for dealing with processes. You can create new processes
with theexec command, or you can create new processes withopen and then use the file
I/O commands to communicate with the process(es). In addition, you can read and write
environment variables using theenv variable and you can terminate the current process
with theexit command. Like the file commands in Chapter 10, these commands are only
available on UNIX systems and systems that support the kernel calls defined in the POSIX
standard. Table 11.1 summarizes the commands related to process management.

11.1 Invoking subprocesses with exec

Theexec command creates one or more subprocesses and, in the normal case, waits until
they complete before returning. For example,

exec rm main.o

executesrm as a subprocess, passes it the argumentmain.o , and returns afterrm com-
pletes.

The arguments toexec are similar to what you would type as a command line to a
shell program such assh or csh . The first argument toexec is the name of a subprocess
to execute and each additional argument forms one argument to that subprocess. It’s
important to realize that each argument toexec forms a single argument to the subpro-
cess. For example, consider the following command:

exec "rm main.o"

couldn’t f ind "rm main.o" to execute

FIGURE

TABLE 1

102 Processes

DRAFT (10/9/92): Distribution Restricted

An error occurred becauseexec tried to use “rm main.o ” as the name of the subpro-
cess and couldn’t find an executable file by that name.

To execute a subprocess,exec looks for an executable file with a name equal to
exec ’s first argument. If the name starts with/ or ~ thenexec checks the single file
indicated by the name. If the name doesn’t start with/ or ~ thenexec checks each of the
directories in thePATH environment variable to see if the command name refers to an exe-
cutable reachable from that directory.Exec uses the first executable that it finds.

Under normal conditionsexec collects all of the information written to standard out-
put by the subprocess and returns that information as its result. If the last character of out-
put is a newline thenexec removes the newline from what it returns as result (this
behavior may seem strange but it makesexec consistent with other Tcl commands,which
don’t normally terminate the last lines of their results). For example:

exec echo foo bar

foo bar

The arguments toexec may specify input and output redirection in a fashion similar
to the UNIX shells. If one of the arguments toexec is > then the following argument is
taken as the name of a file. The subprocess’s standard output will be redirected to that file
andexec will return an empty string as result.

Standard input may be redirected using either< or <<. If one ofexec ’s arguments is
< then the following argument is taken as a file name and the subprocess’s standard input

Table 11.1.A summary of Tcl commands for manipulating processes.

exec arg ?arg ...?
Execute command pipeline specified byarg ’s as a subprocess. I/O redirec-
tion may be specified with<, <<, and>, pipes may be specified with| , and
background execution may be specified with a final arg of&. Returns stan-
dard output produced by command (without trailing newline, if any) or an
empty string if output is redirected.

exit ?code ?
Terminate process, returningcode to parent as exit status.Code must be an
integer. Ifcode isn’ t specified, return 0 as exit status.

open | command ?access ?
Treatcommand as a list with the same structure as arguments toexec and
create subprocess(es) to execute command(s). Depending onaccess , cre-
ate pipes for writing input to pipeline and reading output from it.

11.1 Invoking subprocesses with exec 103

DRAFT (10/9/92): Distribution Restricted

is taken from that file. If one ofexec ’s arguments is<< then the following argument is
taken as an immediate value to be passed to the subprocess as its standard input:

exec cat << "test input"

test input

If no input redirection is specified then the subprocess inherits the standard input channel
from the process executing theexec command.

The arguments toexec may also specify a pipeline of proceses to execute instead of
a single process. This is done in the standard fashion with the| character. If one or more
of the arguments toexec are| then the| arguments separate the specifications for the
different subprocesses. The first agument in each subprocess specification is the name of
the file to execute for that subprocess and the remaining arguments are arguments to that
subprocess. The standard output of each subprocess is piped to the standard input of the
next subprocess. I/O redirection may be specified using<, <<, or> anywhere among
exec ’s arguments; it will apply to the first subprocess for input redirection and to the last
process for output redirection.

If any of the subprocesses exits abnormally (i.e. it was killed or suspended or returned
a non-zero exit status), or if any of them generates output on its standard error channel,
thenexec returns an error. The error message will consist of the output generated by the
last subprocess (unless it was redirected with>), followed by an error message for each
process that exited abnormally (if any), followed by the information generated on standard
error by the processes, if any. If the last character of standard error output is a newline,
then it is deleted. In addition,exec will set theerrorCode variable to hold information
about the last process that terminated abnormally, if any (see Table 11.2 for details).

If the last argument toexec is & then the subprocess(es) will be executed in back-
ground.Exec will return an empty result immediately, without waiting for the subpro-
cesses to complete. Standard output from the subprocesses will go to the standard output
of the process in whichexec was executed, unless redirected. No errors will be reported
for abnormal exits or standard error output, and standard error for the subprocesses will be
directed to the standard error channel of the process in whichexec was executed.

Althoughexec ’s mechanisms for I/O redirection, pipelines, and background execu-
tion are similar to those of the UNIX shells, there are a few differences. Special characters
like <, | , and& must appear as distinct arguments toexec if they are to receive special
treatment (i.e. they must be surrounded by white space). The shells are generally less par-
ticular about requiring white space. In addition,exec doesn’t perform all of the substitu-
tions performed by shells. In particular,exec doesn’t perform file name “globbing” in
response to characters like* and?. If you want globbing to occur you must request it
explicitly using theglob command described in Section 10.5. For example, to remove all
of the.o files in the current directory you can’t use the command

exec rm *.o

Instead, use the (admittedly more complicated) command

104 Processes

DRAFT (10/9/92): Distribution Restricted

eval "exec rm [glob *.o]"

11.2 I/O to and from a command pipeline

You can also create subprocesses using theopen command; once you’ve done this you
can then use commands likegets andputs to read the subprocesses’ standard output
and write their standard input. To create subprocesses withopen , invoke it with the pipe
symbol| as the first character of the file name. In this case the file name isn’t really a file
name at all. Instead, it specifies a command pipeline. The remainder of the argument after
the | is treated as a list whose elements have exactly the same meaning as the arguments
to theexec command.Open will create a pipeline of subprocesses just as forexec and
it will return an identifier that you can use to transfer data to and from the pipeline. If writ-
ing was requested in the access mode toopen then a pipe will be used for standard input
to the first process in the pipeline and you can invokeputs to write data on that pipe
(remember that the data may not become visible to the process until you invokeflush).
If reading was requested in the access mode then a pipe will be used for the standard out-

Table 11.2.Values placed in theerrorCode variable by theexec command. The top line of each
entry in the table gives the value of the first element of the list that compriseserrorCode and
provides symbolic names for the remaining elements oferrorCode . The text describes the
conditions under which that format forerrorCode is used and explains the meaning of the

CHILDKILLED pid sigName msg
Used when a child process has been killed because of a signal. The second
element oferrorCode is the process’s identifier (in decimal). The third
element is the symbolic name of the signal that caused the process to termi-
nate; it will be one of the names from the include filesignal.h , such as
SIGPIPE . The fourth element is a short human-readable message describ-
ing the signal, such as “write on pipe with no readers ” for
SIGPIPE .

CHILDSTATUS pid code
Used when a child process exits with a non-zero exit status. The second ele-
ment oferrorCode is the process’s identifier in decimal and the third ele-
ment is the exit status returned by the process, in decimal.

CHILDSUSP pid sigName msg
Used when a child process has been suspended because of a signal. The sec-
ond, third, and fourth elements oferrorCode have the same meaning as
for CHILDKILLED above.

11.3 Environment variables 105

DRAFT (10/9/92): Distribution Restricted

put of the last process in the pipeline and you can usegets andread to retrieve the out-
put generated by that process.

Here is an example of opening a command pipeline:

open {|tbl | ditroff -ms} w

f ile4

This command creates a pipeline containing two processes running the document format-
ting programstbl andditroff . Any data written tofile4 with puts will be passed
to thetbl process;tbl ’s output will be passed toditroff as input; andditroff ’s
output, if any, will go to the standard output file of the process executing the Tcl script.

If a command pipeline is opened for writing then it is an error to redirect the pipe-
line’s standard input. If the pipeline isn’t opened for writing then its input will be taken by
default from the standard input of the process that executed theopen command, but it
may be redirected as part of theopen command. If a command pipeline is opened for
reading then it is an error to redirect the pipeline’s standard output. If the pipeline isn’t
opened for reading (as in the above example) then the pipeline’s standard output goes by
default to the standard output of the process that executed theopen command, but it may
be redirected.

When you close a file identifier that corresponds to a command pipeline, theclose
command flushes any buffered output to the pipeline, closes the pipes leading to and from
the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally thenclose returns an error in the same way asexec . If there
is unread output from the pipeline at the time of theclose command then it is lost when
the output pipe is closed.

11.3 Environment variables

Environment variables can be read and written using the standard Tcl variable mechanism.
The array variableenv contains all of the environment variables as elements, with the
name of the element inenv corresponding to the name of the envionrment variable. If you
modify theenv array, the changes will be reflected in the process’s environment variables
and the new values will also be passed to child process created withexec or open .

11.4 Terminating the Tcl process with exit

If you invoke theexit command then it will terminate the process in which the com-
mand was executed.Exit takes a single integer argument. If this argument is provided
then it is used as the exit status to return to the parent process.0 indicates a normal exit
and non-zero values correspond to abnormal exits; values other than0 and1 are rare. If no

106 Processes

DRAFT (10/9/92): Distribution Restricted

argument is given toexit then it exits with a status of0. Sinceexit terminates the pro-
cess, it doesn’t have any return value.

107

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 12
History

This chapter describes Tcl’s history mechanism. The history mechanism keeps track of
commands that you have typed recently and makes it easy for you to re-execute them
without having to completely re-type them. You can also create new commands that are
slight variations on old commands without having to completely retype the old com-
mands.

Tcl’s facilities provide the same general features as the history mechanism incsh .
However, in order to keep the Tcl language syntax simple I didn’t add all ofcsh ’s history
syntax into the Tcl language syntax. Instead, history is implemented with ahistory
command that has several options summarized in Table 12.1 . Thehistory command
requires you to type more characters than the super-concisecsh syntax, but you can
always use thehistory command to build your own short-hands (or re-implement the
csh syntax) if you wish. In fact, theunknown command described in Section 13.5
already implements some of thecsh short-hands such as!! , ! event , and^old ^new.

History is an optional feature in Tcl and is only present in applications that request it.
It’s really only useful in applications where you type Tcl commands interactively, such as
Tcl-based shells, and it tends to be available only in these applications.

12.1 The history list

In applications that use the history mechanism, each command that you type interactively
is entered into ahistory list. The application arranges for this to happen before it executes
the command. Only the commands that you actually type are saved in the history list.
Commands that are executed by Tcl procedures or read from script files are not recorded.

FIGURE

TABLE 1

108 History

DRAFT (10/9/92): Distribution Restricted

Table 12.1.A summary of the options for thehistory command.

history
Same ashistory info .

history add command ?exec ?
Add command to the history list as a new event. Ifexec is specified (or
abbreviated) then also executecommand and return its result. Otherwise an
empty string is returned.

history change newValue ?event ?
Replace the value recorded forevent with newValue . Event defaults to
the current event, not-1 . Returns an empty string.

history event ?event ?
Returns the value ofevent . History revision occurs.

history info ?count ?
Returns a human-readable string giving the event number and command for
each event in the history list. Ifcount is specified then only thecount
most recent events are returned.

history keep count
Changes the size of the history list so that thecount most recent events will
be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the history list.

history redo ?event ?
Re-execute the command recorded forevent and return its result. History
revision occurs.

history substitute old new ?event ?
Retrieve the command recorded forevent , replace any occurrences ofold
by new in it, execute the resulting command, and return its result. History
revision occurs. Bothold andnew are simple strings. The substitution uses
simple equality checks: no wild cards or regular expression features are sup-
ported.

history words selector ?event ?
Retrieve from the command recorded forevent the words given by
selector , and return those words in a string separated by spaces.Selec-
tor can consist of a single number (0 for the first word,1 for the next, and
so on),$ to select the last word, two numbers separated by a dash to select a
range of words ($ may be used as the second “number”), or a pattern to
select all words that match that pattern (the rules forstring match are
used in pattern matching).

12.1 The history list 109

DRAFT (10/9/92): Distribution Restricted

The idea behind history is to save typing; commands in procedures and script files are
already recorded so they can be re-executed without re-typing them. The examples in this
chapter assume that you’ve typed each of the commands, so that they are entered into the
history list.

Each entry in the history list is referred to as anevent; it contains the text of a com-
mand plus a serial number identifying the command. The command text consists of
exactly the characters you typed, before the Tcl parser peforms substitutions for$, [] , etc.
The serial number starts out at1 for the first command you type and is incremented for
each successive command.

Suppose you type the following sequence of commands to an interactive Tcl program:

set x 24
set y [expr $x*2.6]
incr x

At this point the history list will contain three events. You can examine the contents of the
history list by invokinghistory with no arguments:

history

 1 set x 24
 2 set y [expr $x*2.6]
 3 incr x
 4 history

The value returned byhistory is a human-readable string describing what’s on the his-
tory list. Notice that the history command itself generates a fourth event on the list. The
result ofhistory is intended for printing out, not for processing in Tcl scripts; if you
want to write scripts that process the history list, you’ll probably find it more convenient to
use otherhistory options described later in this chapter, such ashistory event .

The commandhistory info provides a more selective way to print out events.
For example, suppose you typed the following command instead of thehistory com-
mand above:

history info 3

 2 set y [expr $x*2.6]
 3 incr x
 4 history

The argument tohistory info determines how many events wll be returned from
the history list; only information for that number of the most recent commands will be
returned. If the last argument is omitted thenhistory info behaves the same ashis-
tory with no arguments.

The history list has a fixed size, which is initially 20. If more commands than that
have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with thehistory keep command:

history keep 100

110 History

DRAFT (10/9/92): Distribution Restricted

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

12.2 Specifying events

Several of the options of thehistory command require you to select an entry from the
history list; the symbolevent is used for such arguments in Table 12.1. Events are spec-
ified as strings with one of the following forms:

Suppose that you had just typed the three commands from page 109 above. If the next
command refers to a history event as-1 or 3 or inc then it selects the command
incr x . If a history event is referred to as-2 or 2 or *2* then it selects the command
set y [expr $x*2.6] . If an event specifier is omitted then it defaults to-1 for all
options excepthistory change .

12.3 Re-executing commands from the history list

Two of the options tohistory may be used to replay commands from the history list.
History redo retrieves a command and re-executes it just as if you had typed the
entire command in place of thehistory redo command. For example, after typing the
three commands from page 109, the command

history redo

replays the most recent command, which isincr x ; it will increment the value of vari-
ablex and return its new value (26). If an additional argument is provided forhistory
redo , it selects an event as described in Section 12.2; for example,

history redo 1

24

replays the first command,set x 24 .

Positive number: Selects the event with that serial number.

Negative number: Selects an event relative to the current event.-1
refers to the event just prior to the current event,-2
refers to the one before that, and so on.

Anything else: Selects the most recent event that matches the string.
The string matches an event either if it is the same as
the first characters of the event’s command, or if it
matches the event’s command using the matching
rules forstring match .

12.3 Re-executing commands from the history list 111

DRAFT (10/9/92): Distribution Restricted

In the examples above it takes more keystrokes to type thehistory commands than
it would take to simply retype the command from the history list. Given that the whole
purpose of the history mechanism is to save typing, the commands above probably don’t
seem very useful. However, there are a number of shortcuts you can use to reduce your
typing. First,history , like all Tcl commands, accepts unique abbreviations for its
options, so you can just typer instead ofredo as the option. Second, any application that
uses the history mechanism should also allow abbreviations for commands typed interac-
tively (this is implemented using theunknown procedure described in Section 13.5).
Thus you should be able to replay the most recent command simply by typing

h r

which requires only four keystrokes including the return.
In addition, the sameunknown mechanism that implements command abbreviations

also simulates the!! and! event history mechanisms fromcsh using thehistory
redo command. Thus you can type “!! ” instead of “history redo ” and “!13 ”
instead of “history redo 13 .”

Thehistory substitute command is similar tohistory redo except that
it modifies the old command before replaying it. It is most commonly used to correct typo-
graphical errors:

set x "200 illimeters"

200 illimeters

history substitute ill mill -1

200 millimeters

History substitute takes three arguments: an old string, a new string, and an
event specifier (the event specifier can be defaulted, in which case it defaults to-1). It
retrieves the command indicated by the event specifier and replaces all instances of the old
string in that command with the new string. The replacement is done using simple textual
comparison with no wild-cards or pattern matching. Then the resulting command is exe-
cuted and its result is returned.

Thehistory substitute command above also takes more keystrokes than
retyping the original command, but again there are shortcuts. One possibility is to abbrevi-
ate the wordshistory andsubstitute and omit the event specifier:

h s ill mill

200 millimeters

Another possibility is take advantage of the fact that theunknown mechanism also simu-
lates thê old ^new syntax of thecsh history mechanism usinghistory substi-
tute , so you can just type the following:

^ill^mill

200 millimeters

112 History

DRAFT (10/9/92): Distribution Restricted

12.4 Current event number: history nextid

The commandhistory nextid returns the number of the next event to be entered into
the history list:

history nextid

3

history

 1 set x 24
 2 history nextid
 3 history

By the timehistory nextid was executed the command had already been inserted
into the history list as event 2, so the command returned3, the number of the next event.

History nextid is most commonly used for generating prompts that contain the
event number. Many interactive applications allow you to specify a Tcl script to generate
the prompt; in these applications you can include ahistory nextid command in the
script so that your prompt includes the event number of the command you are about to
type.

12.5 Retrieving without re-executing

The commandshistory event andhistory words allow you to retrieve informa-
tion from the history list without necessarily re-executing it.History event returns
the command from an indicated event:

set x 24
set y [expr 2*$x]
history event -2

set x 24

As with otherhistory options, the event can be omitted, in which case it defaults to-1 .
Thehistory words command returns one or more words from a command on the

history list. It takes two additional arguments. The first indicates which words are wanted
and the second is an optional event specifier:

set x 24
history words 0

set

In this case the first word of the preceding command was returned. The word specifier may
have any of the following forms:

number Selects the word given by number, with0 correspond-
ing to the first word,1 to the next, and so on.

12.6 History revision 113

DRAFT (10/9/92): Distribution Restricted

Whenhistory words returns multiple words, it does not return them as a proper
Tcl list. It simply concatenates the values with spaces between them. This approach is used
becausehistory words will most commonly be used as part of generating a new Tcl
command that will be executed immediately. If the result ofhistory words were
made into a proper list, it would quote all of the special characters like[] and$ inside the
words, which would probably cause the command to do the wrong thing when executed.

12.6 History revision

Thehistory optionsevent , redo , susbstitute , andwords all performhistory
revision. What this means is that these options modify the history list as part of their exe-
cution. To see the reason for history revision, consider the following command sequence:

incr x
history redo
history redo

Suppose there were no history revision. Then when the secondhistory redo com-
mand is executed, the history list will be as follows:

1 incr x
2 history redo
3 history redo

The secondhistory redo command will replay event 2, which is anotherhistory
redo command, and an infinite loop will occur. The problem is thathistory redo is
context sensitive: it only makes sense at a particular point in time and won’t produce the
same effect if it is replayed later.

History revision avoids this problem and several others by replacinghistory com-
mands on the history list with the information that they return or replay. In the above
example, the firsthistory redo command replaces its entry in the history list with
incr x , so that the history list looks like this when the secondhistory redo com-
mand is executed:

1 incr x
2 incr x
3 history redo

$ Selects the last word of the event.

first - last Selects all of the words fromfirst throughlast ,
inclusive.First must be a number;last may be a
number or$.

pattern Selects all the words that matchpattern using the
rules forstring match .

114 History

DRAFT (10/9/92): Distribution Restricted

The secondhistory redo then replaces event 3 on the history list withincr x as
part of its execution.

Similar history revision occurs for theevent , substitute , andword options.
For example, suppose the following command has just been executed:

set a [expr $b+2]

The table below shows a number of commands that might be typed after the above com-
mand and what will be recorded on the history list after the command carries out its his-
tory revision:

One final (obscure) note about history revision: it occurs even whenhistory isn’t
the top-level command typed by the user. For example, if a user typesfoo andfoo is a
procedure that invokeshistory redo , thenfoo is replaced on the history list with the
command that is replayed. This behavior turns out to do the right thing in most cases. In
cases where this isn’t the right behavior you can usehistory event to save the old
contents of the event andhistory change , described below, to restore its value later.

12.7 Modifying the history list

The last twohistory options allow you to change the contents of the history list. The
history change command modifies an event on the history list. It takes as arguments
a new value to record for an event and an optional event specifier. In this command the
event specifier defaults to thecurrent event rather than to the previous event. For example,
thehistory change command in the following sequence replaces its own entry in the
history list:

set x 24
history change "strange value"
history

 1 set x 24
 2 strange value
 3 history

Thehistory add command adds a new event to the history list and optionally executes
it. For example, the following command addsset x 24 to the history list as a new
event:

Command typed Command recorded

history redo set a [expr $b+2]

history s a b set b [expr $b+2]

set c [history w 2] set c [expr $b+2]

set d [history event -1] set d {set a [expr $b+2]}

12.7 Modifying the history list 115

DRAFT (10/9/92): Distribution Restricted

history add "set x 24"

If an additionalexec argument (or any abbreviation of it) is specified then the command
will be executed as well as being added to the list.

116 History

DRAFT (10/9/92): Distribution Restricted

117

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the publisher. This
statement must be easily visible on the first page of any reproduced copies. The publisher does not
offer warranties in regard to this draft.

Chapter 13
Accessing Tcl Internals

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of the Tcl interpreter. For example, you can use these commands to see if
a variable exists, to find out what entries are defined in an array, to monitor all accesses to
a variable, or to handle references to undefined commands. Table 13.1 summarizes the
commands.

13.1 Querying the elements of an array

Thearray command provides information about the elements currently defined for an
array variable. It provides this information several different ways, depending on the first
argument passed to it. The commandarray size returns a decimal string indicating
how many elements are defined for a given array variable and the commandarray
names returns a list whose entries are the names of the elements of a given array variable:

set currency(France) franc
set "currency(Great Britain)" pound
set currency(Germany) mark
array size currency

3

array names currency

{Great Britain} France Germany

For each of these commands the final argument must be the name of an array variable. The
list returned byarray names does not have any particular order.

FIGURE

TABLE 1

118 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

Table 13.1.A summary of commands for manipulating Tcl’s internal state

array anymore name searchId
Returns1 if there are any more elements to process in searchsearchId of
arrayname, 0 if all elements have already been returned.

array donesearch name searchId
Terminate searchsearchId of arrayname and discard any state associated
with the search. Returns an empty string.

array names name
Returns a list whose entries are the names of all the elements of arrayname.

array nextelement name searchId
Returns the name of the next element in searchsearchId of arrayname,
or an empty string if all elements have already been returned in this search.

array size name
Returns a decimal string giving the number of elements in arrayname.

array startsearch name
Initializes a search through all of the elements of arrayname. Returns a
search identifier that may be passed toarray nextelement , array
anymore , orarray donesearch .

info option ?arg arg ...?
Provides information about the internal state of the Tcl interpreter, depending
onoption andarg ’s. See Table 13.2 for details.

time command ?count ?
Executescommand count times and returns a string indicating the average
elapsed time per execution.Count defaults to 1.

trace variable name ops command
Establish a trace on variablename such thatcommand is invoked whenever
one of the operations given byops is performd onname. Ops must consist
of one or more of the charactersr , w, oru. Returns an empty string.

trace vdelete name ops command
If there exists a trace for variablename that has the operations and command
given byops andcommand, remove that trace so that its command will not
be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variablename.
Each element is a sub-list with two elements, which are theops andcom-
mand associated with that trace.

unknown cmd ?arg arg ...?
This command isn’t implemented by Tcl, but if it is defined then it is invoked
by the Tcl interpreter whenever an unknown command name is encountered.
Cmd will be the unknown command name and thearg ’s will be the fully-
substituted arguments to the command. The result returned byunknown
will be returned as the result of the unknown command.

13.1 Querying the elements of an array 119

DRAFT (10/9/92): Distribution Restricted

Thearray names command can be used in conjunction withforeach to iterate
through the elements of an array. For example, the code below deletes all elements of an
array with values that are0 or empty:

foreach i [array names a] {
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}

Thearray command also provides a second way to search through the elements of
an array, using thestartsearch , anymore, nextelement , anddonesearch
options. This approach is more general than theforeach approach given above, and in
some cases it is more efficient, but it is more verbose than theforeach approach and
isn’t needed very often. Using this approach, the example above looks like this:

set id [array startsearch a]
while [array anymore a $id] {

set i [array nextelement a $id]
if {($a($i) == "") || ($a($i) == 0))} {

unset a($i)
}

}
array donesearch a $id

Thearray startsearch command initiates a search through all of the elements of an
array. It returns an identifier for that search, which the above code saves in variableid .
This identifier must be passed to theanymore , nextelement , anddonesearch
options to identify the search. It’s legal to callarray startsearch several times with
the same variable so that several searches are underway simultaneously; each will have a
different identifier. The exact format of the search identifier isn’t important; all you need
to know is that it is returned byarray startsearch and must be passed into the
other searching commands.

Thearray anymore command indicates whether there are any more elements left
in a search. It returns1 if there are and0 if all of the element names have already been
returned in this search. If there are elements left,array nextelement will return the
name of the next element. The element names are not returned in any particular order. If
there are no elements left in a search thenarray nextelement returns an empty
string. However, it may be dangerous to use the return value fromarray nextele-
ment to detect the end of the search, since it is possible for an array element to have an
empty string for its name.

When you are finished with a search you must invokearray donesearch to tell
Tcl that you’re done; this allows Tcl to free up all of its state associated with the search. If
you forget to callarray donesearch then Tcl’s state will remain allocated; if you do
this often then it will result in wasted memory and inefficient operation of future array
searches.

120 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

13.2 The info command

The info command provides information about the state of the interpreter. It has more
than a dozen options, which are summarized in Table 13.2.

13.2.1 Information about variables

Several of theinfo options provide information about variables.Info exists returns
a0 or 1 value indicating whether or not there exists a variable with a given name:

set x 24
info exists x

1

unset x
info exists x

0

The optionsvars , globals , andlocals return lists of variable names that meet
certain criteria.Info vars returns the names of all variables accessible at the current
level of procedure call;info globals returns the names of all global variables, regard-
less of whether or not they are accessible; andinfo locals returns the names of local
variables, including arguments to the current procedure, if any, but not global variables. In
each of these commands, an additional pattern argument may be supplied. If the pattern is
supplied then only variable names matching that pattern (using the rules ofstring
match) will be returned.

For example, suppose that global variablesglobal1 andglobal2 have been
defined. Suppose also that a procedure is being executed with arguments namedarg1 and
arg2 , and that the procedure has executed aglobal command to makeglobal2
accessible, and that the procedure has also created local variables namedlocal1 and
local2 . Then the following commands might be executed in the procedure:

info vars

global2 arg1 arg2 local2 local1

info globals

global2 global1

info locals

arg1 arg2 local2 local1

info vars *al*

global2 local2 local1

13.2 The info command 121

DRAFT (10/9/92): Distribution Restricted

Table 13.2.A summary of the options for theinfo command (continued on next page).

info args procName
Returns a list whose elements are the names of the arguments to procedure
procName , in order.

info body procName
Returns the body of procedureprocName .

info cmdcount
Returns a count of the total number of Tcl commands that have been exe-
cuted in this interpreter.

info commands ?pattern ?
Returns a list of all the commands defined for this interpreter, including
built-in commands, application-defined commands, and procedures. Ifpat-
tern is specified, then only the command names matchingpattern are
returned (string match ’s rules are used for matching).

info default procName argName varName
Checks to see if argumentargName to procedureprocName has a default
value. If so, stores the default value in variablevarName and returns1.
Otherwise, returns0 without modifyingvarName .

info exists varName
Returns1 if there exists a variable namedvarName in the current context,0
if no such variable is currently accessible.

info globals ?pattern ?
Returns a list of all the global variables currently defined. Ifpattern is
specified, then only the global variable names matchingpattern are
returned (string match ’s rules are used for matching).

info level ?number ?
If number isn’t specified, returns a number giving the current stack level (0
corresponds to top-level,1 to the first level of procedure call, and so on). If
number is specified, returns a list whose elements are the name and argu-
ments for the procedure call at levelnumber . Number may have any of the
formats accepted byuplevel .

info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

122 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

13.2.2 Information about procedures

Another group ofinfo options provides information about procedures. The command
info procs returns a list of all the Tcl procedures that are currently defined. Likeinfo
vars , it takes an optional pattern argument that restricts the names returned to those that
match a given pattern.Info body , info args , andinfo default return informa-
tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {
if {$a < $b}{

puts stdout "c is $c"
}

}
info body maybePrint

 if {$a < $b} {
 puts stdout "c is $c"
 }

Table 13.2, cont'd.A summary of the options for theinfo command.

info locals ?pattern ?
Returns a list of all the local variables defined for the current procedure, or
an empty string if no procedure is active. Ifpattern is specified, then only
the local variable names matchingpattern are returned (string
match ’s rules are used for matching).

info procs ?pattern ?
Returns a list of the names of all procedures currently defined. Ifpattern
is specified, then only the procedure names matchingpattern are returned
(string match ’s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns the
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the formmajor .mi-
nor , wheremajor andminor are each decimal integers. Increases in
minor correspond to bug fixes, new features, and backwards-compatible
changes.Major increases only when incompatible changes occur.

info vars ?pattern ?
Returns a list of all the names of all variables that are currently accessible. If
pattern is specified, then only the variable names matchingpattern are
returned (string match ’s rules are used for matching).

13.2 The info command 123

DRAFT (10/9/92): Distribution Restricted

info args maybePrint

a b c

info default maybePrint a x

0

info default maybePrint c x

1

set x

24

Info body returns the procedure’s body exactly as it was specified to theproc com-
mand.Info args returns a list of the procedure’s argument names, in the same order
they were specified toproc . Info default returns information about an argument’s
default value. It takes three arguments: the name of a procedure, the name of an argument
to that procedure, and the name of a variable. If the given argument has no default value
(e.g.a in the above example),info default returns0. If the argument has a default
value (c in the above example) theninfo default returns1 and sets the variable to
hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,
here is a Tcl procedure that writes a Tcl script file. The script will contain Tcl code in the
form of proc commands that recreate all of the procedures in the interpreter. The file
could then besource ’d in some other interpreter to duplicate the procedure state of the
original interpreter. The procedure takes a single argument, which is the name of the file to
write:

proc printProcs file {
set f [open $file w]
foreach proc [info procs]

set argList {}
foreach arg [info args $proc]

if [info default $proc $arg default] {
lappend argList [list $arg $default]

} else {
lappend argList $arg

}
}
puts $f [list proc $proc $argList \

[info body $proc]
}
close $f

}

Info provides one other option related to procedures:info level . If info
level is invoked with no additional arguments then it returns the current procedure invo-
cation level:0 if no procedure is currently active,1 if the current procedure was called

124 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

from top-level, and so on. Ifinfo level is given an additional argument, the argument
indicates a procedure level andinfo level returns a list whose elements are the name
and actual arguments for the procedure at that level. The level argument may be specified
in any of the forms described in Section 7.4 for theuplevel command. For example, the
following procedure prints out the current call stack, showing the name and value for each
argument of each active procedure:

proc printStack {} {
set level [info level]
for {set i 1} {$i < $level} {incr i} {

puts stdout "Level $i: [info level $i]"
}

}

13.2.3 Information about commands

Info commands is similar toinfo procs except that it returns information about all
existing commands, not just procedures. If invoked with no arguments, it returns a list of
the names of all commands; if an argument is provided, then it is a pattern in the sense of
string match and only command names matching that pattern will be returned.

The commandinfo cmdcount returns a decimal string indicating how many com-
mands have been executed in this Tcl interpreter. It may be useful during peformance tun-
ing to see how many Tcl commands are being executed to carry out various functions.

The commandinfo script indicates whether or not a script file is currently being
processed. If so, then the command returns the name of the innermost nested script file
that is active. If there is no active script file theninfo script returns an empty string.
This command is used for relatively obscure purposes, such as disallowing command
abbreviations in script files.

13.2.4 Tclversion and library

Info tclversion returns the version number for the Tcl interpreter in the form
major . minor . Each ofmajor andminor is a decimal string. If a new release of Tcl
contains only backwards-compatible changes, such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If a new
release contains changes that are not backwards-compatible, so that existing Tcl scripts or
C code that invokes Tcl’s library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to 0.

In principle, of course, there is no such thing as a perfectly compatible change. Add-
ing a new command to Tcl might break scripts that define a procedure with the same name,
and fixing a bug might break a script that only works because of the bug. But in practice
you should be able to upgrade to new versions with little or no effort as long as the major
version number hasn’t changed.

13.3 Timing command execution 125

DRAFT (10/9/92): Distribution Restricted

The commandinfo library returns the full path name of the Tcl library direc-
tory. This directory is used to hold standard scripts used by Tcl, such as a default definition
for theunknown procedure described in Section 13.5 below.

13.3 Timing command execution

Thetime command is used to measure the performance of Tcl scripts. It takes two argu-
ments, a script and a repetition count:

time {set a xyz} 10000

92 microseconds per iteration

Time will execute the given script the number of times given by the repetition count,
divide the total elapsed time by the repetition count, and print out a message like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To
make accurate timing measurements, I suggest experimenting with the repetition count
until the total time for thetime command is a few seconds.

13.4 Tracing operations on variables

Thetrace command allows you to monitor the usage of one or more Tcl variables. Such
monitoring is calledtracing. If a trace has been established on a variable then a Tcl com-
mand will be invoked whenever the variable is read or written or unset. Traces can be used
for a variety of purposes:

• monitoring the variable’s usage (e.g. by printing a message for each read or write oper-
ation)

• propagating changes in the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

• restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variable’s value to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

To create a trace, invoke thetrace command with thevariable option:

trace variable x rwu xtrace

The first argument totrace variable is the name of the variable to trace (x in the
example). The next argument is a string whose characters indicate the operations to be
traced,r for reads,w for writes, andu for unsets. In the example above all operations will
be traced, but that need not be the case in general. The last argument totrace vari-

126 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

able is a Tcl command to invoke whenever one of the selected operations occurs; typi-
cally this is the name of a procedure.

The variable name specified intrace variable may take any of three forms.
First, it may be the name of a scalar variable, in which case a trace will be established on
that variable. Second, it may be the name of an array element, in the usual form, such as
a(b) . This results in a trace on the given element; other elements of the same array will
not be affected by the trace. Third, the variable may be specified as the name of an array
without any element specification. In this case the trace applies to all of the elements of the
array, including new elements created after the trace is established.

When a traced operation occurs, Tcl invokes the trace command by appending three
additional arguments to the command specified for the trace:

command name1 name2 op

The first part of the command will be exactly the same as the command specified in the
trace variable command.Name1 andname2 give the name of the variable being
accessed andop gives the operation being performed (r for read,w for write, oru for
unset). If the variable is a scalar thenname1 is the variable’s name andname2 is an
empty string. If the variable is an element of an array thenname1 is the name of the array
andname2 is the name of the element within the array. If an unset trace exists for an
entire array and the array is deleted, then the trace will be invoked withname1 equal to
the array’s name andname2 an empty string.

For example, after a trace is set on variablex in the example above, the following
command will be invoked in response to each read of variablex (assuming thatx is a sca-
lar variable):

xtrace x {} r

The command specified for a trace need not be a single word as in the above example. For
example, if the trace had been set with the following command:

trace variable x rwu {xtrace 24 $x}

then reads ofx would cause the following trace comand to be invoked:

xtrace 24 $x x {} r

The trace command is invoked in the execution context where the variable access
occurred. Thus if the variable is accessed in a Tcl procedure then the trace command will
have access to the same local variables as the code of the procedure. This context may be
different than the context where the trace was created. In the normal case where the trace
command invokes a Tcl procedure, the commands in the trace procedure will have to use
upvar or uplevel to access the traced variable. Note also thatname1 andname2 as
passed to the trace command are the names used to access the variable. They may not be
the same as the names under which the trace was created; differences occur if the access is
made through a variable defined withupvar .

Read traces are invoked just before the variable’s result is read. The trace command
can modify the variable to affect the result returned by the read operation. If the trace com-

13.4 Tracing operations on variables 127

DRAFT (10/9/92): Distribution Restricted

mand returns an error of any sort then the traced operation is aborted with an error mes-
sage saying that the trace command denied access; otherwise the result returned by the
trace command is ignored.

Write traces are invoked after the variable’s value has been modified but before read-
ing the new value to return as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. The trace command can return
an error in the same way as for read traces to deny access; this can be used to implement
read-only variables, for example (however, the trace command will have to restore the old
value of the variable, since the value will already have been modified before the trace
command is invoked). As with read traces, the result of the trace command is ignored
unless it is an error.

Tracing is temporarily disabled for a variable during the execution of read and write
trace commands. This means that the trace commands can access the variable without
causing traces to be invoked recursively. If there are multiple traces for a variable, all of
them are disabled when any of them is executing.

Unset traces are invoked after the variable has already been deleted. From the stand-
point of the trace command, the variable will appear to be undefined with no traces. If an
unset occurs because of a procedure return then the trace will be invoked in the variable
context of the procedure being returned to; the variable context of the returning procedure
will no longer exist. If a variable is unset because its interpreter is deleted then no trace
commands will be invoked, since there is no context in which to execute them. Traces are
not disabled during unset traces, so if an unset trace command creates a new trace and
accesses the varable then the trace will be invoked.

If multiple traces are set for the same variable, then each trace is invoked on each
variable access. The most recently created trace is invoked first. If an array element has a
trace set and there is also a trace set for the whole array, then array traces are invoked
before element traces. If one trace returns an error then no additional traces are invoked
for that access.

It is legal to set a trace on a non-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set a read trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove any traces on that variable. It is legal, and not unusual,
for an unset trace to immediately re-establish itself on the same variable so that it can
monitor the variable if it should be re-created in the future.

To delete a trace, invoketrace vdelete with the same arguments passed to
trace variable . For example, the original trace created onx above can be deleted
with the following command:

trace vdelete x rwu xtrace

If the arguments totrace vdelete don’t match the information for any existing trace
then the command has no effect.

128 Accessing Tcl Internals

DRAFT (10/9/92): Distribution Restricted

The commandtrace vinfo returns information about the traces curently set for a
variable. It is invoked with an argument consisting of a variable name, as in the following
example:

trace vinfo x

{rwu xtrace}

The return value fromtrace vinfo is a list, each of whose elements describes one
trace on the variable. Each element is itself a list with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will be invoked. If the variable specified totrace vinfo is an element of an array,
then only traces on that element will be returned; traces on the array as a whole will not be
returned.

13.5 Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If
the interpreter discovers that the command name specified in a Tcl command doesn’t exist,
then it checks for the existence of a command namedunknown . If there is such a com-
mand then the interpreter invokesunknown instead of the original command, passing the
name and arguments for the non-existent command tounknown as its arguments. For
example, suppose that you type the following commands:

set x 24
createDatabase library $x

If there is no command namedcreateDatabase but there is a command named
unknown , then the following command is invoked:

unknown createDatabase library 24

Notice that substitutions are performed on the arguments to the original command before
unknown is invoked. Each argument tounknown will consist of one fully-substituted
word from the original command.

Theunknown procedure can do anything it likes to carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

proc unknown {name args} {
set cmd [info commands $name*]
if {[llength $cmds] != 1} {

error "unknown command \"$name\""
}
uplevel [list $cmd] $args

}

13.5 Unknown commands 129

DRAFT (10/9/92): Distribution Restricted

Note that when the command is re-invoked with an expanded name, it must be invoked
usinguplevel so that the command executes in the same variable context as the original
command.

The Tcl script library includes a default version ofunknown that expands abbrevia-
tions and performs many other functions, such asauto-loading script files when proce-
dures defined in them are first invoked, automatically executing subprocesses, and
performing simple history substitutions (see Chapter 12 for details). You’re free to write
your ownunknown procedure or modify the library version to provide additional func-
tions.

